Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(x^{10}-10x^9+10x^8-...-10x+10\)
=\(x^{10}-9x^9-x^9+9x^8+x^8-....-9x-x+10\)
= \(x^9\left(x-9\right)-x^8\left(x-9\right)+x^7\left(x-9\right)-...-\left(x-9\right)+1\)
= \(\left(x-9\right)\left(x^9-x^8+x^7-...-1\right)+1\)
Thay x=9 ta được :
A= \(0\left(x^9-x^8+x^7-...-1\right)+1=1\)
Vậy A=1
x=9
=>x+1=10
\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)
\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)
=-x+1
=-9+1=-8
x=9 ⇒ 10= x+1 thay vào C ta đc
C = x14- (x+1).x13 +........ - (x+1).x +x+1
⇒C = x14-x14-x13+........ -x2 -x +x+1
⇒C =1
mk làm tóm tắt ít số hơn nếu bạn muốn dễ hiểu thì thay nhiều cái vào
\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
Có x= 9 nên 10x^13=(9+1)x^13=(x+1)x^13=x^14+x^13
Tương tự thay vào C=x^14 - x^14 + x^13 - ....-x^2 - x +10=-x + 10=1