K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

A=\(x^{10}-10x^9+10x^8-...-10x+10\)

=\(x^{10}-9x^9-x^9+9x^8+x^8-....-9x-x+10\)

= \(x^9\left(x-9\right)-x^8\left(x-9\right)+x^7\left(x-9\right)-...-\left(x-9\right)+1\)

= \(\left(x-9\right)\left(x^9-x^8+x^7-...-1\right)+1\)

Thay x=9 ta được :

A= \(0\left(x^9-x^8+x^7-...-1\right)+1=1\)

Vậy A=1

27 tháng 10 2023

x=9

=>x+1=10

\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)

\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)

=-x+1

=-9+1=-8

27 tháng 7 2019

x=9 ⇒ 10= x+1 thay vào C ta đc

C = x14- (x+1).x13 +........ - (x+1).x +x+1

⇒C = x14-x14-x13+........ -x2 -x +x+1

⇒C =1

mk làm tóm tắt ít số hơn nếu bạn muốn dễ hiểu thì thay nhiều cái vào

27 tháng 7 2019

Thanks!!!

3 tháng 9 2018

\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

8 tháng 1 2020

Có x= 9 nên 10x^13=(9+1)x^13=(x+1)x^13=x^14+x^13
Tương tự thay vào C=x^14 - x^14 + x^13 - ....-x^2 - x +10=-x + 10=1

29 tháng 9 2018

A=x14-10x13+...-10x+10 tại x=9

A=x14-(x+1).x13+...-(x+1)x+x+1

=x14-x14-x13+x13+....-x2-x+x+1

=(x14-x14)+(x13-x13)+...+(x2-x2)+(x-x)+1

=0+1

=1

Vậy A=1 tại x=9

Mình làm hơi lộn xộn chút, thông cảm.