Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
1+2+3+...+x=78
=>(x+1)x:2=78
=>x 2+x=156
=>x 2+13x-12x-156=0
=>x(13+x)-12(x+13)=0
=>(x-12)(x+13)=0
=>x-12=0 hoặc x+13=0
=>x=12 hoặc x=-13
vì x>0 =>x=12
vậy x=12
78=1 + 2 + 3 + ...........+ 12
vậy x là 12
k nha
(x+1)/99 + (x+2)/98 + (x+3)/97 + (x+4)/96 = -4
=> [(x+1)/99 +1] +[(x+2)/98+1]+[(x+3)/97+1]+[(x+4)/96+1] = 0
=>[(x+100)/99] + [(x+100)/98] +[(x+100)/97] + [(x+100)/96]=0
=>(x+100)(1/99+1/98+1/97+1/96)=0
=>x+100=0
=>x= -100
3.(7 + x) = 88 - 82
3.(7 + x) = 24
7 + x = 24 : 3
7 + x = 8
x = 8 - 7
x = 1
3 . ( 7 + x ) = 88 - 82
3 . ( 7 + x ) = 88 - 64
3 . ( 7 + x ) = 24
7 + x = 24 : 3
7 + x = 8
x = 8 - 7
x = 1
\(\frac{2}{5}.\frac{1}{x}+\frac{1}{x}.2+\frac{2}{5}=0,5\)
\(\Rightarrow\frac{2}{5x}+\frac{2}{x}+\frac{2}{5}=\frac{1}{2}\)
\(\Rightarrow2.\left(\frac{1}{5x}+\frac{1}{x}+\frac{1}{5}\right)=\frac{1}{2}\)
\(\Rightarrow\frac{1}{5x}+\frac{5}{5x}+\frac{x}{5x}=\frac{1}{2}:2=\frac{1}{4}\)
\(\Rightarrow\frac{1+5+x}{5x}=\frac{1}{4}\)
\(\Rightarrow4.\left(1+5+x\right)=5x\)
\(\Rightarrow4+20+4x=5x\)
\(\Rightarrow24+4x=5x\)
\(\Rightarrow5x-4x=24\)
\(\Rightarrow x=24\)
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\frac{100}{101}.x=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{100}{101}\)
\(x=\frac{303}{200}\)
x>1 , x và 210 là số nguyên tố
ƯCLN (x,210) = 1
210=2.3.5.7
Ta có (1+1).(1+1).(1+1).(1+1)=16 ước
Ư(210)={1;2;3;5;6;7;10;14;15;21;30;35;42;70;105}
Vậy x là những số ko chia dc cho Ư(210)
=>x thuộc {13;19;23;29;...}
\(x.1+x.2+x.3+....+x.99=495\)
<=> \(x.\left(1+2+3+...+99\right)=495\)
<=> \(x.\left\{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2\right\}=495\)
<=> \(x.4950=495\)
<=> \(x=\frac{495}{4950}=\frac{1}{10}\)
x.1 +x.2+x.3+...+x.99=495
=>x.(1+2+3+...+99)=495
=>x.\(\frac{\left(1+99\right).99}{2}=495\)
=>x.4950=495
=>x=\(\frac{495}{4950}\)
=>x=1/10