Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x + 3 )( x2 - 3x + 9 ) - x( x - 2 )2 = 27
⇔ x3 + 27 - x( x2 - 4x + 4 ) = 27
⇔ x3 + 27 - x3 + 4x2 - 4x = 27
⇔ 4x2 - 4x + 27 - 27 = 0
⇔ 4x2 - 4x = 0
⇔ 4x( x - 1 ) = 0
⇔ 4x = 0 hoặc x - 1 = 0
⇔ x = 0 hoặc x = 1
b) ( x - 1 )( x - 5 ) + 3 = 0
⇔ x2 - 5x - x + 6 + 3 = 0
⇔ x2 - 6x + 9 = 0
⇔ ( x - 3 )2 = 0
⇔ x - 3 = 0
⇔ x = 3
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
bài 1 điền vào chỗ trống
a) x2 + 4x + 4
= (x + 2)2
b) x2 - 8x + 16
= (x - 4)2
c) x3 +12x2 + 48x + 64
= (x + 4)3
d) x3 - 6x + 12x - 8
= (x - 2)3
e) x2 + 2x + 1
= (x + 1)2
f) x2 - 1
= (x - 1)(x + 1)
g) x2 - 4x + 4
= (x - 2)2
h) x2 - 4
= (x - 2)(x + 2)
i) x2 + 6x + 9
= (x + 3)2
j) 4x2 - 9
= (2x - 3)(2x + 3)
k) 16x2 - 8x + 1
= (4x - 1)2
l) 9x2 + 6x + 1
= (3x + 1)2
m) 36x2 + 36x + 9
= (6x + 3)2
n) x3 + 27
= (x + 3)(x2 - 3x + 9)
o) 17x3 + 27 (Đề sai)
a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
⇔\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?
a)(2x-3)2=(x+5)2
=>4x2-12x+9=x2+10x+25
=>3x2-22x-16=0
=>3x2+2x-24x-16=0
=>x(3x+2)-8(3x+2)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b)X2.(x-1)-4x2+8x-4=0
=>x2(x-1)-4x2+4x+4x-4=0
=>x2(x-1)-4x(x-1)-4(x-1)=0
=>x2(x-1)-(4x-4)(x-1)=0
=>(x2-4x+4)(x-1)=0
=>(x-2)2(x-1)=0
=>x=2 hoặc x=1
c) 4x2- 25 - (2x- 5) . ( 2x+7)=0
=>4x2-25-(4x2+14x-10x-35)=0
=>4x2-25-4x2-14x+10x+35=0
=>-4x+10=0
=>-4x=-10 <=>x=5/2
d) x3+27+(x+3).(x-9)=0
=>x3+33+(x+3)(x-9)=0
=>(x+3)(x2-3x+9)+(x+3)(x-9)=0
=>(x2-3x+9+x-9)(x+3)=0
=>(x2-2x)(x+3)=0
=>x(x-2)(x+3)=0
=>x=0 hoặc x=2 hoặc x=-3
e) (x-2).(x+5)- x2+4=0
=>(x-2)(x+5)-(x-2)(x+2)=0
=>(x-2)(x+5-x-2)=0
=>3(x-2)=0 <=>x=2
Sau khi khai triển hằng đẳng thức và thực hiện chuyển vế bạn sẽ đk kết quả như này!(\(\left(2x-3\right)^2=\left(x+5\right)^2=3x^2-22x-14\)
\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)
\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)
\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)
\(\Leftrightarrow x^2+5x=\frac{14}{9}\)
\(\Leftrightarrow x=0,2938.....\)
Tui chưa nháp nhưng câu 1 thử nhân hết ra coi triệt tiêu bớt đc ko, mà chắc chắn là nhân ra sẽ mất cái 27x^3 rồi nên thành pt bậc 2 giải vô tư nhé, câu 2 tách hết ra cx lm đc vì nó là pt bậc 2
câu 3 tách thành (x+3)(x^2-7x+9)=0 có pt bậc 2 nên ok r
(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4
<=> 27x3 - 8 - 27x3 + 1 = x - 4
<=> x - 4 = -7
<=> x = -3
Vậy S = {-3}
9(2x + 1) = 4(x - 5)2
<=> 4(x2 - 10x + 25) - 18x - 9 = 0
<=>4x2 - 40x + 100 - 18x - 9 = 0
<=> 4x2 - 58x + 91 = 0
<=> (4x2 - 58x + 210,25) - 119,25 = 0
<=> (2x - 14,5)2 = 119,25
<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
Vậy S = {...}
x3 - 4x2 - 12x + 27 = 0
<=> (x3 + 3x2) - (7x2 + 21x) + (9x + 27) = 0
<=> x2(x + 3) - 7x(x + 3) + 9(x + 3) = 0
<=> (x2 - 7x + 9)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-7x+9=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2-7x+12,25\right)-3,25=0\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-3,5\right)^2=3,25\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3,5=\sqrt{3,25}\\x-3,5=-\sqrt{3,25}\end{cases}}\)
hoặc x = -3
<=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
hoặc x = -3
Vậy S = {...}
\(pt\text{⇔}\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\text{⇔}x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\\ \text{⇔}17x=17\text{⇔}x=1\)
Vậy nghiệm của phương trình : \(S=\left\{1\right\}\)
Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow17x=17\)
hay x=1