K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

Đặt \(\frac{x}{4}\)\(\frac{y}{14}\)= k ( k khác 0 )

=> x = 4k và y = 14k thay vào biểu thức x.y=56 ta có 

                    4k . 14k = 56

                         56k\(^2\)= 56

                              k2= 56 :56 = 1

=> k = 1 hoặc k = -1.

Với k=1 khi đó x = 4k = 4.1 =4

                        y = 14.1 =14

      Với k = -1 thì x = -4 và y = -14 

vậy x = 4 , y=14 và x = -4, y = -14

15 tháng 7 2019

sử dụng tính chất của dãy tỉ số bằng nhau

Vô câu hỏi tương tự mà tham khảo

Tự làm đi nhóc cái này còn cơ bản nên suy nghĩ chút đi 

15 tháng 7 2019

Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

    \(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{20+18-6}=\frac{16}{32}=\frac{1}{2}\)

=> \(\hept{\begin{cases}\frac{x}{10}=\frac{1}{2}\\\frac{y}{6}=\frac{1}{2}\\\frac{z}{3}=\frac{1}{2}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{2}.10=5\\y=\frac{1}{2}.6=3\\z=\frac{1}{2}.3=\frac{3}{2}\end{cases}}\)

Vậy ...

1 tháng 11 2019

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3

suy ra: x+y=27; y+z=36: z+x=39

ta có: x+y+z=51

suy ra: 

x=51-(y+z)=51-36=15

y=51-(z+x)=51-39=12

z=51-(x+y)51-27=24

1 tháng 11 2019

Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà

10 tháng 11 2019

Ta có:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)\(x+y=k.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y}{a+b}=\frac{k}{a+b}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{a}=\frac{k}{a+b}\Rightarrow x=\frac{k}{a+b}.a\\\frac{y}{b}=\frac{k}{a+b}\Rightarrow y=\frac{k}{a+b}.b\\\frac{z}{c}=\frac{k}{a+b}\Rightarrow z=\frac{k}{a+b}.c\end{matrix}\right.\)

Vậy \(x=\frac{k}{a+b}.a;y=\frac{k}{a+b}.b;z=\frac{k}{a+b}.c\)

Chúc bạn học tốt!

7 tháng 1 2017

Giải
Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{z+x-y-z}{10-6}=\frac{x-y}{4}=\frac{x+y-z-x}{15-10}=\frac{y-z}{5}\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

Vậy...