Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))
\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)
\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)
\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)
\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)
\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)
Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)
Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)
Áp dụng Bđt Cô si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)