Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =3( 1+3+32 +...+319) => A không là số chính phương
Vì A chia hết cho 3 nhưng không chia hết cho 9; ( 1+3+32 +.....319) chia cho 3 dư 1
S=1+3+\(3^2\)+\(3^3\)+.....+\(3^{2012}\)
S=(1+3)+(\(3^2\)+\(3^3\))+.......+(\(3^{2011}\)+\(3^{2012}\))
S=4+\(3^2\).(1+3)+.......+\(3^{2011}\)(1+3)
S=4+4.\(3^2\)+....+4.\(3^{2011}\)
S=4.(1+\(3^2\)+.....+\(3^{2011}\))\(⋮\)4
Vậy S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2010}+3^{2011}\right)+3^{2012}\)
\(S=4+3^2\left(1+3\right)+...+3^{2010}\left(1+3\right)+3^{4\times503}\)
\(S=4+3^2\times4+...+3^{2010}\times4+\left(.....1\right)\) (các chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1)
mà \(\left(.....1\right)⋮̸4\)
\(\Rightarrow S⋮̸4\)
Chúc bạn học tốt
Không thể khẳng định được điều đó em nhé!