K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B={x\(\in\)N|x=3k; 1<=k<=4}

C={x\(\in\)N|x=4*a2; 1<=a<=5}

D={x\(\in\)N|x=9*a2;1<=a<=4}

E={x\(\in\)N|x=4k; 0<=x<=4}

G={x\(\in\)N|x=(-3)^k; 1<=k<=4}

 

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a)

\(\sqrt{(x-3)(8-x)}+x^2-11x=0\)

\(\Leftrightarrow \sqrt{11x-x^2-24}+x^2-11x=0(*)\)

Đặt \(\sqrt{11x-x^2-24}=a(a\geq 0)\Rightarrow x^2-11x=-(a^2+24)\)

Khi đó \((*)\Leftrightarrow a-(a^2+24)=0\)

\(\Leftrightarrow a^2-a+24=0\Leftrightarrow (a-\frac{1}{2})^2+\frac{95}{4}=0\) (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b)

ĐKXĐ:.........

\(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)

\(\Rightarrow (\sqrt{7x-13}-\sqrt{3x-9})^2=5x-27\)

\(\Leftrightarrow 10x-22-2\sqrt{(7x-13)(3x-9)}=5x-27\)

\(\Leftrightarrow 5(x+1)=2\sqrt{(7x-13)(3x-9)}\)

\(\Rightarrow 25(x+1)^2=4(7x-13)(3x-9)\)

\(\Leftrightarrow 25(x^2+2x+1)=84x^2-408x+468\)

\(\Leftrightarrow 59x^2-458x+443=0\)

\(\Rightarrow x=\frac{229\pm 8\sqrt{411}}{59}\) . Kết hợp với ĐKXĐ suy ra \(x=\frac{229+8\sqrt{411}}{59}\)

12 tháng 12 2020

ĐKXĐ: \(x=\pm3\)

Nếu \(x=3\), phương trình tương đương 

\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)

\(\Leftrightarrow0=0\)

\(\Rightarrow x=3\) là nghiệm của phương trình 

Nếu \(x=-3\), phương trình tương đương

\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)

\(\Leftrightarrow-54=0\)

\(\Rightarrow x=-3\) không phải là nghiệm của phương trình

Vậy ...

15 tháng 9 2023

a) \(A=\left\{x\in N|0\le x\le4\right\}\)

b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)

c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)

d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)

 

17 tháng 9 2023

E vs F chịu à :)?

23 tháng 8 2016

ĐK: \(x\ge0;y\ge\frac{9}{2}\)

(1) \(\Leftrightarrow6\left(x+\frac{1}{2}\right)\sqrt{\left[3\left(x+\frac{1}{2}\right)\right]^2+\frac{27}{4}}=2y\sqrt{y^2+\frac{27}{4}}\)

Xét \(f\left(t\right)=2t\sqrt{t^2+\frac{27}{4}}\left(t>0\right)\)

\(f'\left(t\right)=2\sqrt{t^2+\frac{27}{4}}+\frac{2t^2}{\sqrt{t^2+\frac{27}{4}}}>0;\forall t>0\)

→ hàm đồng biến trên (0;+∞)

Mà \(f\left(3\left(x+\frac{1}{2}\right)\right)=f\left(y\right)\Leftrightarrow3\left(x+\frac{1}{2}\right)=y\)

Thế vào (2) ta được: 

\(\left(6y+6\right)^2=24\sqrt{x}\left(6y-6\right)\Leftrightarrow\left(x+1\right)^2=4\sqrt{x}\left(x-1\right)\)

\(\Leftrightarrow\left(\sqrt{x}\right)^4-4\left(\sqrt{x}\right)^3+2\left(\sqrt{x}\right)^2+4\sqrt{x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x}\right)^4+4\sqrt{x}+1-2\cdot x\cdot2\sqrt{x}-2\cdot x\cdot1+2\cdot1\cdot2\sqrt{x}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}-1\right)^2=0\)

\(\Leftrightarrow x-2\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1+\sqrt{2}\Leftrightarrow x=3+2\sqrt{2}\)

\(\Rightarrow y=\frac{21+12\sqrt{2}}{2}\)