K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Để ;(x + 1).(x - 3) < 0 thì ta có 2 trường hợp

Th1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(loai\right)}}\)

Th2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow3\sqrt{x}=2x\)

\(\Leftrightarrow\sqrt{x}=\frac{2x}{3}\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\frac{4x^2}{9}\)

\(\Leftrightarrow x=\frac{4x^2}{9}\)

\(\Leftrightarrow\frac{4x^2}{x}=9\)

\(\Leftrightarrow4x=9\)

\(\Leftrightarrow x=\frac{9}{4}\)

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow9x-4x^2=0\)

\(\Leftrightarrow x\left(9-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\9-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{4}\end{cases}}}\)

1 tháng 8 2017

a,

\(\left(x+1\right)\left(x-3\right)< 0\)

\(\Rightarrow x+1\text{ và }x-3\text{ khác dấu và }x+1\ne0,x-3\ne0\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\Rightarrow1< x< 3\\\left\{{}\begin{matrix}x+1< 0\\x-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>3\end{matrix}\right.\Rightarrow\text{mâu thuẫn}\end{matrix}\right.\)

Vậy \(1< x< 3\) thì \(\left(x+1\right)\left(x-3\right)< 0\)

b,

\(\dfrac{x+1}{x-4}>0\)

\(\Rightarrow x+1\text{ và }x-4\text{ cùng dấu và }x+1\ne0,x-4\ne0\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne4\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-4>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x>4\end{matrix}\right.\Rightarrow x>4\\\left\{{}\begin{matrix}x+1< 0\\x-4< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x< 4\end{matrix}\right.\Rightarrow x< -1\end{matrix}\right.\)

Vậy khi \(x>4\) hoặc \(x< -1\) thì \(\dfrac{x+1}{x-4}>0\)

1 tháng 8 2017

\(\left(x+1\right)\left(x-3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-3>0\Rightarrow x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 3\)

\(\dfrac{x+1}{x-4}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-4>0\Rightarrow x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-4< 0\Rightarrow x< 4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x>-1;x< 4\)

30 tháng 7 2018

\(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)

30 tháng 7 2018

\(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)

\(x+\frac{1}{2}=0\)hoặc \(x-\frac{3}{4}=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)hoặc \(x=\frac{3}{4}\)

27 tháng 6 2019

đkxđ:xx>3 

\(\left|5-2x\right|=x-4\) 

=>TH1:

\(5-2x=x-4\)

-x-2x=-5-4

-3x=-9

x=3(loại)

TH2:

5-2x=-x+4

x-2x=-5+4

-x=-1

x=1(loại)

vậy ko tìm đc x thỏa mãn đề bài

     

27 tháng 6 2019

\(\left|5-2x\right|-3=x-7\)

\(\left|5-2x\right|=x-7+3\)

\(\left|5-2x\right|=x-4\)

Đk: \(x-4\ge0\)\(\Rightarrow x\ge4\)

Ta có: \(\left|5-2x\right|=x-4\)

\(\Rightarrow\orbr{\begin{cases}5-2x=x-4\\5-2x=-x+4\end{cases}\Rightarrow}\orbr{\begin{cases}-2x-x=-4-5\\-2x+x=4-5\end{cases}\Rightarrow}\orbr{\begin{cases}3x=9\\-x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)( cả 2 trường hợp x ko thỏa mãn )

Vậy \(x\in\varnothing\)

2 tháng 7 2016

\(\left(x-1\right)\left(x+2\right)< 0\) <=> x-1 và x+2 khác dấu

Mà x-1 < x+2 nên \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}=>\hept{\begin{cases}x< 1\\x>-2\end{cases}=>-2< x< 1}}\)

Vậy.........

\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) <=> x-2 và x+2/3 cùng dấu

\(\left(+\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}=>x< -\frac{2}{3}}}\)

\(\left(+\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}=>x>2}}\)

Vậy x>2 hoặc x<-2/3

  1. x= -1
  2. x= -1 ; -3, -4.... trừ -2 
16 tháng 8 2017

a) (x-3).11=(x-7).10

=>11x-33=10x-70

=>11x-10x=-70+33

=>x= -37