K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(\left(-x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)-x^2\left(x-6\right)\)

\(=-x^3-6x^2-12x-8+x^3-8-x^3+6x^2\)

\(=-x^3-12x-16\)

27 tháng 8 2023

Ta có : \(B\text{=}4x^2-12x+9\)

\(B\text{=}\left(2x-3\right)^2\)

Với \(x\text{=}\dfrac{1}{2}\)

\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)

\(B\text{=}\left(-2\right)^2\text{=}4\)

Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)

\(A\text{=}10x^2\)

Với \(x\text{=}-\dfrac{1}{5}\)

\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)

27 tháng 8 2023

B = 4x² - 12x + 9

= (2x - 3)²

Tại x = 1/2 ta có:

B = (2.1/2 - 3)²

= (-2)²

= 4

-------------------

A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²

= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36

= 10x²

Tại x = 1/5 ta có:

A = 10.(1/5)²

= 2/5

6 tháng 8 2018

\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=4x\left(x^2-9\right)-x^3+27\)

\(=4x^3-36x-x^3+27\)

\(=3x^3-36x+27\)

6 tháng 8 2018

\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)

\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)

\(=\left(x+6\right).0\)

\(=0\)

25 tháng 7 2018

Bài 2:

\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)

\(=25x^2+10x+1-\left(2xy-3\right)^2\)

\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)

\(=25x^2+10x+1-4x^2y^2+12xy-9\)

\(=25x^2-4x^2y^2+10x+12xy-8\)

Bài 2: 

\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)

\(=x^3-1=x^3-9x^2+2x+6\)

\(=x^3-9x^2+2x+6=x^3-1\)

\(=x^3-9x^2+2x+6+1=x^3-1+1\)

\(=x^3-9x^2+2x+7=x^3\)

\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)

\(=-9x^2+2x+7=0\)

\(\Rightarrow x=-\frac{7}{9};x=1\)

NV
22 tháng 7 2021

Ghi lại đề đi em, là \(14^2\) hay \(14x^2\)?

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

1: =>(x+2018)(6x-3)=0

=>x+2018=0 hoặc 6x-3=0

=>x=1/2 hoặc x=-2018

2: x(x-11)+3(11-x)=0

=>(x-11)(x-3)=0

=>x=11 hoặc x=3

4: =>(x+5)(2x-4)=0

=>2x-4=0 hoặc x+5=0

=>x=2 hoặc x=-5

3: =>(x-3)(x+2)=0

=>x=3 hoặc x=-2

24 tháng 8 2023

Bài 1:

\(6x\left(x+2018\right)-3\left(x+2018\right)=0\)

\(\Leftrightarrow\left(x+2018\right)\left(6x-3\right)=0\)

\(\Leftrightarrow3\left(x+2018\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\x=\dfrac{1}{2}\end{matrix}\right.\)

Bài 2:

\(x\left(x-11\right)+3\left(11-x\right)=0\)

\(\Leftrightarrow x\left(x-11\right)-3\left(x-11\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=11\end{matrix}\right.\)

Câu 3:

\(x\left(x-3\right)-2\left(3-x\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Câu 4:

\(2x\left(x+5\right)-4\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)