Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\\left(x-2012-x+2011\right)\left(x-2012+x-2011\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\2x=2023\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: Trường hợp 1: x<2010
Pt sẽ là 2010-x+2011-x=2012
=>4021-2x=2012
=>2x=2009
hay x=2009/2(nhận)
TRường hợp 2: 2010<=x<2011
=>x-2010+2011-x=2012
=>1=2012(vô lý)
Trường hợp 3: x>=2011
=>x-2010+x-2011=2012
=>2x=2012+4021=6033
hay x=6033/2(nhận)
a/ \(\left|x-2011\right|=x-2012\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2011=x-2012\\x-2011=-x+2012\end{matrix}\right.\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x-x=-2012+2011\\x+x=2012+2011\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(loại\right)\\2x=4023\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{4023}{2}\)
Vậy ...
a, Đ/k x-2012>=0 suy ra x>=2012
|x-2011|=\(\orbr{\begin{cases}x-2012\\2012-x\end{cases}}\)
TH1:x-2011=x-2012
suy ra 0=4023(loại vì mất x)
TH2: x-2011=2012-x
suy ra 2x=4023
suy ra x=2011,5
Vậy..........
Xet x≤2010 thi: -(x-2010)-(x-2011)=2012
=> -x+2010-x+2010-2012=0
=> -2x+2008=0
=> x=1004(TM)
Xet 2010≤x<2011 thi : (x-2010)-(x-2011)=2012
=> x-2010-x+2011-2012=0
=> 0x=2013
=> pt vo nghiem
Xet x>2011 thi: x-2010+x-2011=2012
=> 2x-4021-2012=0
=> 2x-6033=0
=> x=6033/2(TM)