Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
vì x và y biết x và y tỉ lệ nghịch với 3 và 2
=>pt: \(\dfrac{x}{y}=\dfrac{2}{3}\)\(=>y=\dfrac{3}{2}x\)(1)
lại có ổng bình phương 2 số đó là 325
=>pt: \(x^2+y^2=325\left(2\right)\)
thế (1) vào (2)=>\(x^2+\left(\dfrac{3x}{2}\right)^2=325\)
\(< =>x^2+\dfrac{9x^2}{4}=325< =>\dfrac{4x^2+9x^2}{4}=325\)
\(< =>4x^2+9x^2=1300\)
đặt \(x^2=t\left(t\ge0\right)=>4t+9t=1300< =>13t=1300< =>t=100\left(TM\right)\)
=>\(x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)\(=>\left[{}\begin{matrix}y=\dfrac{3}{2}.10\\y=\dfrac{3}{2}\left(-10\right)\end{matrix}\right.< =>\left[{}\begin{matrix}y=15\\y=-15\end{matrix}\right.\)
vậy (x,y)={(10;15)(-10;-15)}
Giải:
Ta có: \(3x=2y\) ( do x, y tỉ lệ nghịch với nhau ) và \(x^2+y^2=325\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k,y=3k\)
Mà \(x^2+y^2=325\)
\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=325\)
\(\Rightarrow2^2.k^2+3^2.k^2=325\)
\(\Rightarrow k^2\left(2^2+3^2\right)=325\)
\(\Rightarrow k^2.13=325\)
\(\Rightarrow k^2=25\)
\(\Rightarrow k=5\) hoặc \(k=-5\)
+) \(k=5\Rightarrow x=10;y=15\)
+) \(k=-5\Rightarrow x=-10;y=-15\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;15\right);\left(-10;-15\right)\)
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow x=\dfrac{2}{3}y\)
Thay vào \(x^2+y^2=325\), ta có:
\(\dfrac{4}{9}y^2+y^2=325\\ \Leftrightarrow\dfrac{13}{9}y^2=325\\ \Leftrightarrow y^2225\\ \Leftrightarrow\left[{}\begin{matrix}y=15\Rightarrow x=10\\y=-15\Rightarrow x=-10\end{matrix}\right.\)
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=325
=>13k^2=325
=>k^2=25
TH1: k=5
=>x=10; y=15
TH2: k=-5
=>x=-10; y=-15