Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy \(\left(x;y;z\right)=\left(20;16;12\right).\)
Chúc bạn học tốt!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
⇒\(\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)
⇔\(12x=15y=20z\)⇒\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
⇒\(\left\{{}\begin{matrix}x=5.4=20\\y=4.4=16\\z=3.4=12\end{matrix}\right.\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Theo t/c dãy tỉ số=nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
Do đó:
+)\(\frac{12x-15y}{7}=0\Rightarrow12-15y=0\Rightarrow12x=15y\Rightarrow3.4x=3.5y\Rightarrow4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\left(1\right)\)
+)\(\frac{20z-12x}{9}=0\Rightarrow20z-12x=0\Rightarrow20z=12x\Rightarrow4.5z=4.3x\Rightarrow5z=3x\Rightarrow\frac{x}{5}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
Do đó:
+)\(\frac{x}{5}=4\Rightarrow x=20\)
+)\(\frac{y}{4}=4\Rightarrow y=16\)
+)\(\frac{z}{3}=4\Rightarrow z=12\)
Vậy (x;y;z)=(20;16;12)
a: =>x^2+2x-3=x^2-4
=>2x=-1
=>x=-1/2
b: \(\dfrac{12x-15y}{7}=\dfrac{20z-15x}{9}=\dfrac{15y-20z}{11}\)
\(=\dfrac{12x-15y+20z-15x+15y-20z}{7+9+11}=\dfrac{-3x}{27}=\dfrac{-x}{9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-15y}{7}=\dfrac{-x}{9}\\\dfrac{20z-15x}{9}=\dfrac{-x}{9}\\\dfrac{15y-20z}{11}=\dfrac{-x}{9}\\x+y+z=48\end{matrix}\right.\)
\(\Leftrightarrow\begin{matrix}-115x+135y=0\\20z-14x=0\\135y-180z+11x=0\\x+y+z=48\end{matrix}\)
=>\(\left(x,y,z\right)\in\varnothing\)
Bài 12:
\(\dfrac{a}{b}=\dfrac{7}{8}\)
nên \(b=a:\dfrac{7}{8}=\dfrac{8}{7}a\)
Ta có: \(\dfrac{b}{c}=\dfrac{4}{3}\)
\(\Leftrightarrow b=\dfrac{4}{3}c\)
\(\Leftrightarrow a\cdot\dfrac{8}{7}=\dfrac{4}{3}c\)
\(\Leftrightarrow a=\dfrac{4}{3}:\dfrac{8}{7}\cdot c=\dfrac{4}{3}\cdot\dfrac{7}{8}\cdot c=\dfrac{7}{6}c\)
Vậy: c tỉ lệ với a theo hệ số tỉ lệ k=6/7