K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-1\right)\left(2x+2\right)-\left(x-1\right)\left(x-2\right)-\left(x+3\right)\left(x+4\right)=0\)

=>\(2x^2+2x-2x-2-\left(x^2-3x+2\right)-\left(x^2+7x+12\right)=0\)

=>\(2x^2-2-x^2+3x-2-x^2-7x-12=0\)

=>-4x-14=0

=>4x=-14

=>\(x=-\dfrac{7}{2}\)

23 tháng 4 2024

(\(x\) - 1)(2\(x\) + 2) - (\(x-1\))(\(x-2\)) - (\(x\) + 3)(\(x\) + 4) = 0

(\(x-1\))(2\(x\) + 2 - \(x\) + 2) - (\(x+3\))(\(x\) + 4) = 0

(\(x-1\))(\(x\) + 4) - (\(x\) + 3)(\(x\) + 4) = 0

(\(x\) + 4)(\(x-1-x-3\)) = 0

(\(x+4\)).(-4) = 0

\(x\) + 4 = 0

\(x\) = - 4

Vậy \(x\) = - 4

 

 

8 tháng 7 2017

Giúp mình nhé các bạn mình đang cần gấp lắm

18 tháng 12 2015

|x - 4| + |6 - x| = 0

|x  - 4| ; |6 - x| \(\ge\) 0

=> |x - 4| = |6 - x| = 0

|x - 4| = 0 => x= 4

|6 - x| = 0 => x=  6

Vì \(4\ne6\) n ê n không có giá trị của x

Bạn làm các câu khác tương tự 

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

5 tháng 7 2021

a) \(\left|4-x\right|+2x=3\)

<=> \(\left|4-x\right|=3-2x\)

<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

b) \(\left|x-7\right|+2x+5=6\)

<=> \(\left|x-7\right|=1-2x\)

<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)

Vậy x = -6

c) \(3x-\left|2x+1\right|=2\)

<=> \(\left|2x+1\right|=3x-2\)

<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)

Vậy x = 3

d) \(\left|x+2\right|-x=2\)

<=> \(\left|x+2\right|=x+2\)

<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)

<=> 0x = 0 (luôn đúng) và x = -2 (ktm)

Vậy x \(\ge\)-2

5 tháng 7 2021

e) \(\left|x-3\right|=21\)

<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)

<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)

Vậy x = 24 hoặc x = -18

f) \(\left|2x+3\right|-\left|x-3\right|=0\)

<=> \(\left|2x+3\right|=\left|x-3\right|\)

<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)

Vậy x thuộc {-6; 0}

g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)

          \(\left|x+\frac{2}{8}\right|\ge0\forall x\)

    \(\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)

Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)

Vậy x = 1

h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)

<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)

Lập bảng xét dấu: 

x                     -3/2              2

x - 2        2 - x    |        2 - x    0        x - 2

2x + 3  -2x - 3   0      2x + 3  |          2x + 3

Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2

<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)

Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2

<=> 4x = 1 <=> x = 1/4 ((tm)

Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2

<=> 2x = -3 <=>  x = -3/2 (ktm)

Vậy x = 1/4

i) |2x - 3| - x = |2 - x|

<=> |2x - 3| - |2 - x| = x (*)

Lập bảng xét dấu

x                    3/2               2

2x - 3   3 - 2x   0     2x - 3   |  2x - 3

2 - x     2 - x     |       2 - x    0   x - 2

Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x =  x

<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x

<=> 2x = 5 <=> x = 5/2 (ktm)

Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x

<=> 0x = -5 (vô lí)

Vậy x = 1/2

k) 2|x - 3| - |4x - 1| = 0

<=> 2|x - 3| = |4x - 1|

<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...

1 tháng 12 2016

1,X=-1 hoặc 3

2,Tìm x sao cho (x+3) và (3x-2) ko bằng 0

27 tháng 6 2019

1) \(|5x-3|=|7-x|\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)

Vậy...

27 tháng 6 2019

2) \(2.|3x-1|-3x=7\)

\(\Leftrightarrow2.|3x-1|=7+3x\)

\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)

Vậy...

9 tháng 1 2017

a) \(\left|4-x\right|+2x=3\)

\(\Rightarrow\left|4-x\right|=3-2x\)

Nếu \(4-x\ge0\Rightarrow x\ge-4\) thì:
\(4-x=3-2x\)

\(\Rightarrow4-3=-2x+x\)

\(\Rightarrow-x=1\)

\(\Rightarrow x=-1\) ( t/m )

Nếu \(4-x< 0\Rightarrow x< -4\) thì:

\(-\left(4-x\right)=3-2x\)

\(\Rightarrow-4+x=3-2x\)

\(\Rightarrow-4-3=-2x-x\)

\(\Rightarrow-7=-3x\)

\(\Rightarrow x=\frac{7}{3}\) ( loại )

Vậy \(x=-1\)

b) Vì \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)

nên \(4x\ge0\Rightarrow x\ge0\)

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)

\(\Rightarrow x+1+x+2+x+3=4x\)

\(\Rightarrow x=6\)

Vậy \(x=6\)

c) \(\left|2x-1\right|=2\)

\(\Rightarrow2x-1=\pm2\)

+) \(2x-1=2\Rightarrow x=\frac{3}{2}\)

+) \(2x-1=-2\Rightarrow x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{3}{2};\frac{-1}{2}\right\}\)

d) \(\left|3-2x\right|+\left|4y+5\right|=0\)

\(\Rightarrow\left|3-2x\right|=0\)\(\left|4y+5\right|=0\)

+) \(\left|3-2x\right|=0\Rightarrow3-2x=0\Rightarrow x=\frac{3}{2}\)

+) \(\left|4y+5\right|=0\Rightarrow4y+5=0\Rightarrow y=\frac{-5}{4}\)

Vậy \(x=\frac{3}{2};y=\frac{-5}{4}\)

e) \(x^2+\left|x-1\right|=x^2+2\)

\(\Rightarrow\left|x-1\right|=2\)

Đến đây làm tương tự phần c để tìm x