Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)
\(\left|y-3\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(1;3)
a,\(\frac{11}{12}-\left(\frac{5}{42}-x\right)=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{42}+x=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{28}-\frac{11}{12}-\frac{11}{12}+\frac{5}{42}\)
\(\Leftrightarrow x=\left(\frac{15}{28}+\frac{5}{42}\right)-\left(\frac{11}{12}+\frac{11}{12}\right)\)
\(\Leftrightarrow x=\frac{55}{84}-\frac{11}{6}\)
\(\Leftrightarrow x=\frac{-33}{28}\)
b, \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
x/2013 - 1/10 - 1/15 - 1/21 - ... - 1/120 = 5/8
x/2013 – (2/20 + 2/30 + 2/42 + … + 2/240) = 5/8
x/2013 – 2 x (1/(4x5) + 1/(5x6) + 1/(6x7) + … + 1/(15x16)) = 5/8
x/2013 – 2 x (1/4 – 1/16) = 5/8
x/2013 – 2 x 3/16 = 5/8
x/2013 = 5/8 + 6/16 = 1
x = 2013
đây là đáp án của tôi
x/2013 - 1/10 - 1/15 - 1/21 - ... - 1/120 = 5/8
x/2013 – (2/20 + 2/30 + 2/42 + … + 2/240) = 5/8
x/2013 – 2 x (1/(4x5) + 1/(5x6) + 1/(6x7) + … + 1/(15x16)) = 5/8
x/2013 – 2 x (1/4 – 1/16) = 5/8
x/2013 – 2 x 3/16 = 5/8
x/2013 = 5/8 + 6/16 = 1
x = 2013
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=0-1=-1\)
a: =>7(x-5)>0
=>x-5>0
=>x>5
b: =>x-1 thuộc {1;-1;11;-11}
=>x thuộc {2;0;12;-10}
c: =>x+1+7 chia hết cho x+1
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
d: =>(x+2)(x-5)<0
=>-2<x<5
a) 6 - |1/2 - x| = 2/5
|1/2 - x| = 6 - 2/5 = 30/5 - 2/5
|1/2 - x| = 28/5
<=> 1/2 - x = 28/5 hay 1/2 - x = -28/5
<=> x = 1/2 - 28/5 hay x = 1/2 -(-28/5) = 1/2 + 28/5
<=> x = 5/10 - 56/10 hay x = 5/10 + 56/10
<=> x = -51/10 hay x = 61/10
b)|x + 3/5| - 1/2 = 1/2
|x + 3/5| = 1/2 + 1/2
|x + 3/5| = 2/2 = 1
<=> x + 3/5 = 1 hay x + 3/5 = -1
<=> x + 3/5 = 5/5 hay x + 3/5 = -5/5
<=> x = 5/5 - 3/5 hay x = -5/5 - 3/5
<=> x = 2/5 hay x = -8/5
c)4 - |x - 1/5| = -1/2
|x - 1/5| = 4 - (-1/2) = 4 + 1/2
|x - 1/5| = 8/2 + 1/2 = 9/2
<=> x - 1/5 = 9/2 hay x - 1/5 = -9/2
<=> x = 9/2 - 1/5 hay x = -9/2 - 1/5
<=> x = 45/10 - 2/10 hay x = -45/10 - 2/10
<=> x = 43/10 hay x = -47/10
d)|x - 2/5| + 3/4 = 11/4
|x - 2/5| = 11/4 - 3/4
|x - 2/5| = 8/4 = 2
<=> x - 2/5 = 2 hay x - 2/5 = -2
<=> x = 2 + 2/5 hay x = -2 + 2/5
<=> x = 10/5 + 2/5 hay x = -10/5 + 2/5
<=> x = 12/5 hay x = -8/5
Bạn à, nên học kỹ hơn nhé! Bây giờ đã gần kết thúc giữa học kỳ 1 rồi mà nắm không vững cái này là lên cuối học kỳ 1 sẽ khó khăn lắm đấy!
Ta có :
\(\left(x-10\right)^{x+1}-\left(x-10\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-10\right)^{x+1}\left[1-\left(x-10\right)^{10}\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-10=0\\1-\left(x-10\right)^{10}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\\left[\begin{array}{nghiempt}x-10=1\\x-10=-1\end{array}\right.\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\\left[\begin{array}{nghiempt}x=11\\x=9\end{array}\right.\end{array}\right.\)
Vậy x = 10 ; x = 11 ; x = 9
\(\left(x-10\right)^{x+1}-\left(x-10\right)^{x+11}=0\)
\(\Rightarrow\left(x-10\right)^{x+1}.\left[1-\left(x-10\right)^{10}\right]=0\)
\(\Rightarrow\left(x-10\right)^{x+1}=0\) hoặc \(1-\left(x-10\right)^{10}=0\)
+) \(\left(x-10\right)^{x+1}=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
+) \(1-\left(x-10\right)^{10}=0\)
\(\Rightarrow\left(x-10\right)^{10}=1\)
\(\Rightarrow x-10=\pm1\)
+ \(x-10=1\Rightarrow x=11\)
+ \(x-10=-1\Rightarrow x=9\)
Vậy \(x\in\left\{10;11;9\right\}\)