K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2019

Đầu tiên là tính chất cơ bản của trị tuyệt đối: \(\left|A\right|\ge0\) với A là một biểu thức bất kì

Cho nên, để pt \(\left|A\right|=a\) có nghiệm thì điều kiện ban đầu là \(a\ge0\)

Ví dụ như sau:

\(\left|x+1\right|=1\)

Ta thấy \(1>0\) nên pt này có nghiệm

Còn pt: \(\left|x+1\right|=-1\)

Thì \(-1< 0\) nên pt này vô nghiệm

Do đó, ở 1 pt nếu 1 vế là trị tuyệt đối, 1 vế là biểu thức theo x thì đầu tiên ta phải tìm điều kiện cho biểu thức vế phải không âm

Ví dụ:

\(\left|3x+2\right|=2x-1\)

Thì đầu tiên phải tìm điều kiện để vế phải ko âm, nghĩa là:

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

Xong bước tìm điều kiện, giờ đến giải pt

//

Phương trình trị tuyệt đối có dạng: \(\left|A\right|=a\) (với \(a\ge0\)) thì ta suy ra:

\(\left[{}\begin{matrix}A=a\\A=-a\end{matrix}\right.\)

Ví dụ như sau:

\(\left|2x+3\right|=1\Rightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\) sau đó giải pt bình thường

Nếu vế phải là biểu thức của x thì cũng làm y hệt thôi, ví dụ như sau:

\(\left|3x+2\right|=2x-1\)

Sau khi đã xong bước tìm điều kiện bên trên, pt trở thành:

\(\Rightarrow\left[{}\begin{matrix}3x+2=2x-1\\3x+2=-\left(2x-1\right)\end{matrix}\right.\)

Và giải bình thường.

Sau khi giải xong, nhớ đối chiếu nghiệm tìm được với điều kiện ban đầu, nếu thỏa mãn thì nhận, còn ko thì phải loại.

Ví dụ 1 bài toán đầy đủ:

\(\left|5x-3\right|-2x+5=0\)

\(\Leftrightarrow\left|5x-3\right|=2x-5\) (đầu tiên, biến đổi về dạng \(\left|A\right|=a\))

Do \(\left|5x-3\right|\ge0\Rightarrow2x-5\ge0\Rightarrow x\ge\frac{5}{2}\) (tìm điều kiện cho vế phải)

Khi đó:

\(\left|5x-3\right|=2x-5\)

\(\Rightarrow\left[{}\begin{matrix}5x-3=2x-5\\5x-3=-\left(2x-5\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=-2\\7x=8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}< \frac{5}{2}\\x=\frac{8}{7}< \frac{5}{2}\end{matrix}\right.\)

2 nghiệm vừa tìm được đều nhỏ hơn \(\frac{5}{2}\) (không thỏa mãn) nên pt vô nghiệm

1 tháng 6 2021

ai làm cho mik với pls

1 tháng 6 2021

ai giúp mik với pls

1 tháng 6 2021

ai làm cho mik mik cảm ơn chân thành

1 tháng 8 2017

=    (x2+1)- [(x2)+ 13]=0

 (x6+ 3.x+3.x+1) - (x6+1) =0

 x6+3.x4+3.x2+1-x6-1=0

3.x4+3.x2=0

3.x2(x2+1)=0

\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)

vay x=0

10 tháng 3 2017

g(1)=1- 6 x 1+ 6 x 1- 6 x 13+ 6 x 1- 6 x 1 +11

= 1 - 6 + 6 - 6 + 6 - 6 + 11

= 6

21 tháng 7 2023

\(...\Rightarrow\left(x+3\right)\left(x+3\right)^2-\left(9x^3+6x^2+x\right)+\left(2x+1\right)\left(2x-1\right)^2=28\)

\(\Rightarrow\left(x+3\right)^3-9x^3-6x^2-x+\left(4x^2-1\right)\left(2x-1\right)^{ }=28\)

\(\Rightarrow\left(x+3\right)^3-9x^3-6x^2-x+\left(4x^2-1\right)\left(2x-1\right)^{ }=28\)

\(\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-4x^2-2x+1=28\)

\(\Rightarrow-x^2+24x+28=28\)

\(\Rightarrow x^2-24x=0\)

\(\Rightarrow x\left(x-24\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-24=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=24\end{matrix}\right.\)

`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`

`=21x^2+1+17x-2+6x^3-12x^2-8`

`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`

`= 6x^3+9x^2+17x-9`

`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`

`= 21x^2+1+17x+2-6x^3+12x^2+8`

`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`

`= -6x^3+33x^2+17x+11`

`----`

`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`

`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`

`= 7x^5-12x^2+x-1`

`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`

`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`

`= 7x^5+34x^4+12x^2-x-1`