Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x+6}{x+1}\)
\(\left\{\left(x+6\right)-\left(x+1\right)\right\}⋮x+1\)
\(5⋮x+1\)
\(x+1\inƯ_{\left(5\right)}=\left\{-5;5;1;-1\right\}\)
\(=>x\inƯ_{\left(5\right)}=\left\{-6;4;0;-2\right\}\)
\(b,\frac{x-2}{x+3}\)
\(\left\{\left(x+3\right)-\left(x-2\right)\right\}⋮x+3\)
\(5⋮x+3\)\(=>x+3\inƯ_{\left(5\right)}=\left\{-5;5;-1;1\right\}\)
\(=>x\in\left\{-8;2;-4;-2\right\}\)
\(a,\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot(-2)^2\)
\(=\frac{6}{7}+\frac{5}{8}:\frac{5}{1}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{5}{8}\cdot\frac{1}{5}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot4}{16}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot1}{4}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{4}=\frac{48+7-42}{56}=\frac{13}{56}\)
\(b,\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-2}{3}+\frac{5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-4+5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}:\frac{2}{3}=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}\cdot\frac{3}{2}=\frac{2}{3}+\frac{1}{12}=\frac{8}{12}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4}\)
c, Xem lại đề
d, \(\frac{-3}{5}+\left[\frac{-2}{5}-99\right]\)
\(=\frac{-3}{5}+\frac{-497}{5}=\frac{-500}{5}=-100\)
b, Tìm x
\(\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{1}{7}-\frac{1}{8}\right]\cdot56\)
\(\Rightarrow\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{8}{56}-\frac{7}{56}\right]\cdot56\)
\(\Rightarrow\left[\frac{6}{33}+\frac{11}{33}\right]\cdot x=1\)
\(\Rightarrow\frac{17}{33}\cdot x=1\)
\(\Rightarrow x=1:\frac{17}{33}=1\cdot\frac{33}{17}=\frac{33}{17}\)
Để A nguyên thì x + 5 chia hết cho x + 3
=> x + 3 + 2 chia hết cho x + 3
=> 2 chia hết cho x + 3
=> x + 3 thuộc Ư(2) = {-3;-1;1;3}
Ta có bảng :
x + 3 | -3 | -1 | 1 | 3 |
x | -6 | -4 | -2 | 0 |
Gọi số nguyên cần tìm là n , ta có :
\(\frac{-5+n}{9+2n}\) = \(\frac{1}{3}\)
=> ( -5 + n ) x 3 = 9 + 2n
=> -5 x 3 + 3n = 9 + 2n
=> -15 + 3n = 9 + 2n
=> 3n - 2n = 9 - ( -15 )
=> n = 24
k nha
\(\frac{\left(x-1\right)^2}{3}=\frac{9}{x-1}\)
\(\Rightarrow\left(x-1\right)^3=27\)
\(\Rightarrow\left(x-1\right)^3=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)