Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P=\frac{\left(x+\frac{1}{x}^6\right)-\left(x^6+\frac{1}{x}^6\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x}^3\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\left(x>0\right)\)
\(\Rightarrow Pmin=6\Leftrightarrow x=1\)
a/ Đặt: \(x+\frac{1}{x}=a\)
Ta có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
\(x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)^2-2\)
\(=\left(a^3-3a\right)^2-2\)
\(\Rightarrow M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^6-\left(a^3-3a\right)^2+2-2}{a^3+a^3-3a}\)
\(=\frac{\left(a^3+a^3-3a\right)\left(a^3-a^3+3a\right)}{\left(a^3+a^3-3a\right)}=3a\)
\(=3.\left(x+\frac{1}{x}\right)=\frac{3x^2+3}{x}\)
b/ \(\frac{3x^2+3}{x}=3x+\frac{3}{x}\ge2.3=6\)
Đấu = xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)
\(A=\frac{x^2+10x+16}{x}=x+\frac{16}{x}+10\ge2\sqrt{x.\frac{16}{x}}+10=18\)
\(\Rightarrow A_{min}=18\) khi \(x=4\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}>0\Rightarrow t^2=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\Rightarrow t\ge2\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)
\(\Rightarrow B=2\left(t^2-2\right)-5t+6=2t^2-5t+2\)
\(B=\left(2t-1\right)\left(t-2\right)\)
Do \(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0\)
\(B_{min}=0\) khi \(t=2\) hay \(x=y\)
Lời giải:
a) Nếu không điều kiện gì của $x$ thì biểu thức không có GTNN
vì cho $x$ chạy từ \(-100\) đến âm vô cùng thì giá trị $A$ càng nhỏ (âm) vô cùng
b) Điều kiện: \(x>0\)
\(B=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^6+\frac{1}{x^6} \right )-2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left ( x+\frac{1}{x} \right )^6-\left [ (x^3+\frac{1}{x^3})^2-2 \right ]-2}{\left ( x+\frac{1}{x}\right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^3+\frac{1}{x^3} \right )^2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left [ \left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right ) \right ]\left [ \left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right ) \right ]}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right )=\left ( x+\frac{1}{x} \right )^3-\left [ \left ( x+\frac{1}{x} \right )^3-3.x.\frac{1}{x}\left ( x+\frac{1}{x} \right ) \right ]\) (sd hằng đẳng thức đáng nhớ \(x^3+y^3=(x+y)^3-3xy(x+y)\) )
\(=3\left(x+\frac{1}{x}\right)\geq 3.2\sqrt{x.\frac{1}{x}}=6\) (theo BĐT Cô-si cho hai số dương)
Vậy \(B_{\min}=6\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ x>0\end{matrix}\right.\Leftrightarrow x=1\)
\(A=x+13+\dfrac{36}{x}=\left(x+\dfrac{36}{x}\right)+13\ge2\sqrt{\dfrac{x.36}{x}}+13=12+13=25.\text{ Dấu }"="\text{ xảy ra khi: }x=\dfrac{36}{x}\text{ hay: }x=6\)