Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{4x+3}{-2x+1}=\frac{\left(4x-2\right)+5}{-\left(2x-1\right)}=\frac{2\left(2x-1\right)}{-\left(2x-1\right)}-\frac{5}{2x-1}=-2-\frac{5}{2x-1}\)
\(\frac{4x+3}{-2x+1}\) lớn nhất \(\Leftrightarrow\) \(\frac{5}{2x-1}\) nhỏ nhất
Phân số \(\frac{5}{2x-1}\) có tử là số nguyên dương không đổi nên nó đạt giá trị nhỏ nhất khi 2x-1 đạt giá trị âm lớn nhất mà x nguyên
=> \(2x-1=-1\)
=> \(x=0\)
\(B=\frac{4x+3}{-2x+1}\)lớn nhất (x nguyên), thì:
4x + 3 chia hết cho -2x + 1
=> 4x + 3 chia hết cho -(2x - 1)
=> 4x + 3 chia hết cho 2x - 1
=> 4x - 2 + 5 chia hết cho 2x - 1
=> 2.(x - 1) + 5 chia hết cho 2x - 1
=> 5 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(5) = {-5; -1; 1; 5}
=> x thuộc {-2; 0; 1; 3}
=> GTLN của B là: -1 <=> x = -2.
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}