Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x-x2+1)/(x-x2-1) - 1
= (x-x2+1)/(x-x2-1) - (x-x2-1)/(x-x2-1)
= (x-x2+1-x+x2+1)/(x-x2-1) = 2/(x-x2-1) = -2/(x2-x+1)
Ta có: x2-x+1 = x2-x+1/4+3/4 = (x - 1/2)2 + 3/4 > 0 với mọi x
Nên (x-x2+1)/(x-x2-1) < 1 (đpcm)
a\(\Leftrightarrow x^2+y^2+2\ge2x+2y\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(luôn luôn đúng
=> BĐT đượcchứng minh
b/ \(\Leftrightarrow m^2+2m+1-4m\ge0\)
\(\Leftrightarrow m^2-2m+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2\ge0\)(luôn luôn đúng )
=> BĐT dược chứng minh
\(x^2+y^2+z^2\ge xy+yz+zx+\dfrac{1}{3}\left(x-y\right)^2+\dfrac{1}{4}\left(y-z\right)^2+\dfrac{1}{5}\left(z-x\right)^2\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx+\dfrac{2}{3}\left(x-y\right)^2+\dfrac{1}{2}\left(y-z\right)^2+\dfrac{2}{5}\left(z-x\right)^2\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx-\dfrac{2}{3}\left(x-y\right)^2-\dfrac{1}{2}\left(y-z\right)^2-\dfrac{2}{5}\left(z-x\right)^2\ge0\)\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)-\dfrac{2}{3}\left(x-y\right)^2-\dfrac{1}{2}\left(y-z\right)^2-\dfrac{2}{5}\left(z-x\right)^2\ge0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2-\dfrac{2}{3}\left(x-y\right)^2-\dfrac{1}{2}\left(y-z\right)^2-\dfrac{2}{5}\left(z-x\right)^2\ge0\)
\(\Leftrightarrow\dfrac{1}{3}\left(x-y\right)^2+\dfrac{1}{2}\left(y-z\right)^2+\dfrac{3}{5}\left(z-x\right)^2\ge0\left(đúng\right)\)
\(A=x^2-x+1\)
\(A=\left(x^2-\dfrac{1}{2}.2.x+\dfrac{1}{4}\right)-\dfrac{1}{4}+1\)
\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\in R\)
Vậy: \(A>0\forall x\in R\) (đpcm)
\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Áp dụng bđt cauchy-schwarz
(x2+y2)(12+12) >/ (x+y)2
=>2(x2+y2) >/ (x+y)2
=>(x+y)2 </ 2
=>max(x+y)2=2
b. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
-Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đọc không ra. Học cách viết đề đi b