Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mình nhé mình sẽ tích ngay cho các bạn bây giờ mình đang rất cần
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z
\(B=x^3-x+24x\)
\(=x\left(x-1\right)\left(x+1\right)+24x\)
Vì x;x-1;x+1 là 3 số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!=6
=>B chia hết cho 6
Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z
\(B=x^3-x+24x\)
\(=x\left(x-1\right)\left(x+1\right)+24x\)
Vì x;x-1;x+1 là 3 số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!=6
=>B chia hết cho 6
Ta ký hiệu s(n) là tổng các chữ số của số n.
Trước tiên ta cmr: "nếu số a là số đã cho có chữ số tận cùng bằng 0 (a chia hết cho 10) và sau a có ít nhất 9 số liên tiếp đã cho và s(a) chia cho 11 dư 0 hoặc 2, 3, ..., 10 thì trong các số đã cho có số mà tổng các chữ số chia hết cho 11" ♦.
CM:
Nếu s(a) chia cho 11 dư 0 thì ta có đ.p.c.m
Nếu s(a) = 11b + r với 2 ≤ r ≤ 10 => 1 ≤ 11 - r ≤ 9
=> số [a + (11 - r)] nằm trong các số đã cho do sau a có ít nhất 9 số đã cho. Có s([a + (11 - r)]) = s(a) + (11 - r) = 11(b + 1) (số a và a + (11 - r) chỉ khác nhau chữ số hàng đơn vị), tức số a + (11 - r) có tổng các chữ số chia hết cho 11 (đ.p.c.m)
Trong 39 số liên tiếp phải có ít nhất 1 số chia hết cho 10. Ta gọi k là số nhỏ nhất trong 39 số đã cho mà chia hết cho 10. Ta cmr có ít nhất 29 số đã cho lớn hơn k. Thật thế, nếu chỉ có nhiều nhất 28 số đã cho lớn hơn k thì có nghĩa là có ít nhất 10 số đã cho nhỏ hơn k, do vậy trong 10 số đó có 1 số chia hết cho 10 mà lại nhỏ hơn k, mâu thuẫn với định nghĩa của số k.
Ta xét các th:
1. s(k) chia cho 11 dư 0 hoặc dư 2, 3, ..., 10. Từ ♦ => trong các số đã cho có số có tổng các chữ số chia hết cho 11
2. s(k) = 11m + 1. Ta xét 2 th:
2.1. chữ số hàng chục của k ≤ 8
Do sau k có ít nhất 29 số đã cho nên số k + 10 nằm trong các số đã cho, và s(k + 10) = s(k) + 1 = 11m + 2 (số k + 10 chỉ khác số k bằng chữ số hàng chục tăng thêm 1), và sau (k + 10) có ít nhất 19 số đã cho nên theo ♦ trong các số đã cho có số mà tổng các chữ số chia hết cho 11
2.2. Số k có chữ số tận cùng là 9...90 (p chữ số 9 với p ≥ 1)
Số k + 10 có dạng 0...0 (có p + 1 chữ số 0). s(k + 10) = s(k) - 9p + 1 = 11(m - p) + 2(p + 1) (số k + 10 so với số k có các chữ số ở p hàng liên tiếp kể từ hàng chục giảm đi 9 và có chữ số ở hàng cao hơn tiếp theo tăng thêm 1).
Nếp 2(p + 1) chia hết cho 11 hoặc dư 2, 3, ..., 10 thì s(k + 10) chia cho 11 dư 0, 2, 3, ..., 10 vậy theo ♦ trong các số đã cho có số mà tổng các chữ số chia hết cho 11
Nếu 2(p + 1) chia 11 dư 1 => s(k + 10) = 11q + 1, mà số k + 10 có tận cùng bằng p + 1 chữ số 0 (ít nhất 2 chữ số 0 do p ≥ 1) nên với số k1 = (k + 10) + 19 có s(k1) = s(k + 10) + 1 + 9 = 11(q + 1) (do số (k + 1) + 19 và số (k + 1) chỉ khác nhau ở 2 chữ số cuối 19). Dĩ nhiên số k1 = k + 29 nằm trong 39 số đã cho do sau k có ít nhất 29 số đã cho, và có tổng các chữ số chia hết cho 11
Vậy trong 39 số tự nhiên liên tiếp luôn tồn tại số có tổng các chữ số chia hết cho 11
a)Gọi ƯCLN(18n+5;29n+8)=d
Ta có: 18n+5 chia hết cho d
=>29(18n+5) chia hết cho d
522n+145 chia hết cho d
có 29n+8 chia hết cho d
=>18(29n+8) chia hết cho d
522n+144 chia hết cho d
=>522n+145-(522n+144) chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(18n+5;29n+8)=1
=>đpcm
b)tương tự, bạn tìm bội chung nhỏ nhất rồi chia là ra
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.