Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=a^3/24+a^2/8+a/12
= (a^3+ 3 a^2+ 2) /24 = a(a+1)(a+2)/24
ta cần CM a(a+1)(a+2) chia hết cho 24
để dễ hiểu mình sẽ trình bày cụ thể, còn nếu muốn rút gọn thì b có thể tự trình bày lại nhá :D
do a chắn => a=4k hoặc a=4k+2 (k thuộc Z)
TH1: a=4k; a+2=4k+2
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
TH2: a=4k+2, a+2= 4k+4 (k thuộc Z)
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
vậy A=a^3/24+a^2/8+a/12 luôn có giá trị nguyên
M = a^3+3a^2+2a/24
= (a^3+a^2)+(2a^2+2a)/24
= (a+1).(a^2+2a)/24 = a.(a+1).(a+2)/24
a chẵn nên a có dạng 2k ( k thuộc Z )
Khi đó : M = 2k.(2k+1).(2k+2)/24 = k.(2k+1).(k+1)/6
Đặt k.(k+1).(2k+1) = B
Ta thấy : k;k+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 =>B chia hết cho 2 (1)
Nếu k chia hết cho 3 => B chia hết cho 3
Nếu k chia 3 dư 1 => 2k+1 chia hết cho 3 => B chia hết cho 3
Nếu k chia 3 dư 2 => k+1 chia hết cho 3 => B chia hết cho 3
Vậy B chia hết cho 3 (2)
Từ (1) và (2) => B chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> M = B/6 là 1 số nguyên
\(\frac{a^3+3a^2+2a}{24}=\frac{a\left(a+1\right)\left(a+2\right)}{24}\)
de thay h 3 so tu nhien lien tiep chia het cho 6
do a la so tu nhien chan nen hien nhien a phai chia het cho 4
\(\Rightarrow\)chia het cho 24\(\Rightarrow\) A la so nguyen
a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\)
Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\)
\(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)
\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\)
=> Đpcm
b, Tương tự dùng tính chất chia hết
Bài 1:
Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
xong bn áp dụng lên trên lm tiếp
Bài 3:
theo bđt cô si ta có:
\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)
=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\) (1)
Tương tự ta có :
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\) (2)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
Cộng vế vs vế (1)(2)(3) ta có:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
Giả sử cả 3 số nguyên dương a,b,c là số lẻ khi đó từ giả thiết suy ra a+b = abc
vì a,b,c là số lẻ nên a+b là số chẵn và a.b.clà số lẻ do đó a+b = abc là vô lí
Do đó điều giả sử là sai vậy 1 trong 3 số đã cho có ít nhất 1 số chẵn suy ra abc là số chẵn