Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức bằng 0 khi x 3 = 0 và x 2 + x + 1 ≠ 0
Ta có: x 3 = 0 ⇒ x = 0;
x 2 + x + 1 = x 2 + 2 . x . 1 / 2 + 1 / 4 + 3 / 4 = x + 1 / 2 2 + 3 / 4 ≠ 0 mọi x.
Vậy với x = 0 thì giá trị của biểu thức bằng 0.
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{x^2+4x+4+x^2-4x+4+16}{2\left(x-2\right)\left(x+2\right)}\\ A=\dfrac{2x^2+32}{2\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+16}{x^2-4}\\ c,A=-3\Leftrightarrow-3x^2+12=x^2+16\\ \Leftrightarrow4x^2=-4\Leftrightarrow x\in\varnothing\)
Từ giả thiết suy ra (x + 1)2 - 4 ≤ (x - 3)2
Û x2 + 2x + 1 - 4 ≤ x2 - 6x + 9
Û x2 + 2x + 1 - 4 - x2 + 6x - 9 ≤ 0
Û 8x ≤ 12
Û x ≤ 3/2
Vậy x ≤ 3/2là giá trị cần tìm.
Đáp án cần chọn là: C
a) Giá trị của \(\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}\) được xác định
\(\Leftrightarrow x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow x\ne\pm2\)
b) Giá trị của biểu thức bằng 0
\(\Leftrightarrow\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x-2\right)}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}=0\)
\(\Leftrightarrow x^2+2x+3x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}}\)( Thỏa mãn điều kiện xác định )
Vậy ......................
Biểu thức xác định khi: x 2 - 4 = x + 2 x - 2 ≠ 0 và x + 2 2 ≠ 0 hay x ≠ ± 2
Ta có:
Biểu thức bằng 0 khi (x – 1)(x + 6) = 0 và x - 2 x + 2 2 ≠ 0
+) Ta có: (x - 1).(x + 6) = 0 khi x - 1= 0 hay x + 6 = 0
x - 1 = 0 khi x = 1 ( thỏa mãn điều kiện)
x + 6 = 0 khi x = -6 ( thỏa mãn điều kiện)
Vậy với x = 1 hoặc x = - 6 thì giá trị biểu thức bằng 0.