Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{1}{-1+x}}=\sqrt{\dfrac{1}{x-1}}\) có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{1}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
\(ĐKXĐ:\dfrac{1}{-1+1x}>0\Leftrightarrow-1+1x< 0\\ \Leftrightarrow x< -1\)
Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa
Khi\(\dfrac{1}{3-2x}\ge0\)
\(\Leftrightarrow3-2x>0\)
\(\Leftrightarrow-2x< -3\)
\(\Leftrightarrow x>\dfrac{3}{2}\)
\(\Leftrightarrow3x-2\ge0\)
hay \(x\ge\dfrac{2}{3}\)
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\)
Có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)
____________________
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x-3}{2x^2+1}\ge0\)
\(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow x\ge\dfrac{3}{2}\)
a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0
=>3x-2>=0
=>x>=2/3
b: ĐKXĐ: (2x-3)/(2x^2+1)>=0
=>2x-3>=0
=>x>=3/2
a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa
b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
nên căn luôn có nghĩa
c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)
h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)
i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: x>-4
h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
a, ĐKXĐ: \(x^2-3\ge0\Rightarrow x^2\ge3\Rightarrow x\ge\sqrt{3}\)
b, \(\left\{{}\begin{matrix}x-2\ne0\\x-2\ge0\end{matrix}\right.\Rightarrow x-2>0\Rightarrow x>2\)
c, \(\left\{{}\begin{matrix}3-2x\ne0\\\dfrac{1}{3-2x}\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2x\ne3\\3-2x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{3}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)
\(\sqrt{x^2-3}\)
ĐKXĐ: x > 1
\(\dfrac{x}{x-2}+\sqrt{x-2}\)
ĐKXĐ: x > 2
\(\sqrt{\dfrac{1}{3-2x^2}}\)
ĐKXĐ: x < 1,224744871 \(\approx\) 1,22
$a)ĐK:8x+2\ge 0$
$\to 8x \ge -2$
$\to x \ge -\dfrac14$
$b)ĐK:\dfrac{-5}{6-3x} \ge 0(x \ne 2)$
Mà $-5<0$
$\to 6-3x<0$
$\to 6<3x$
$\to x>2$
$*A=x-2\sqrt{x-2}+3(x \ge 2)$
$=x-2-2\sqrt{x-2}+1+4$
$=(\sqrt{x-2}-1)^2+4 \ge 4$
Dấu "=" xảy ra khi $\sqrt{x-2}-1=0 \Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$
có nghĩa \(< =>\left[{}\begin{matrix}x>9\\0\le x< 9\end{matrix}\right.\)
Để \(\sqrt{x}\) có nghĩa <=> x \(\ge0\)
Để \(\dfrac{1}{3-\sqrt{x}}\)có nghĩa
<=> \(3-\sqrt{x}\ne0\)
<=> x \(\ne9\)
KHDK: \(x\ge0;x\ne9\)