\(\sqrt{\left(3x+5\right)\left(x-6\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

4 tháng 7 2021

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)

\(< =>TH1:3-5x\ge0;x-6\ge0\)

\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm

\(TH2:3-5x< 0;x-6< 0\)

\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)

để căn thức đxđ thì\(\frac{3}{5}< x< 6\)

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)

                                                             \(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)

                                                             \(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí)           Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)

                                                             \(\Leftrightarrow\frac{3}{5}\le x\le6\)

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

14 tháng 7 2019

1) \(x\ge\frac{1}{6}\) 

2.\(x\le0\)

3.\(4-5x\ge0\Leftrightarrow x\le\frac{4}{5}\) 

4.mọi x

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

25 tháng 7 2018

a,\(x\ge0,x\ne49\)