\(\dfrac{1+8x}{4+8x}\) - ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)

b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)

15 tháng 8 2018

a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)

b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)

c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)

d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)

k,\(-\left(2x+3\right)^2\)

a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)

\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)

b: x=7 nên x+1=8

\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)

=x-5=7-5=2

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

28 tháng 4 2017

Câu trả lời sai là:

(C) Giá trị của Q tại \(x=3\)\(\dfrac{3-3}{3+3}=0\)

Do ĐKXĐ của phương trình

\(Q=\dfrac{x^2-6x+9}{x^2-9}\) \(x\ne\pm3\)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11

10 tháng 8 2017

a) \(\dfrac{2x+3}{x-5}=\dfrac{2\left(x-5\right)+13}{x-5}=2+\dfrac{13}{x-5}\)

Để \(2+\dfrac{13}{x-5}\in Z\)

thì \(\dfrac{13}{x-5}\in Z\Rightarrow13⋮x-5\)

\(\Rightarrow x-5\inƯ\left(13\right)\)

\(\Rightarrow x-5\in\left\{\pm1;\pm13\right\}\)

Xét các trường hợp...

b) \(\dfrac{x^3-x^2+2}{x-1}=\dfrac{x^2\left(x-1\right)+2}{x-1}=x^2+\dfrac{2}{x-1}\)

Tương tự câu a)

c) \(\dfrac{x^3-2x^2+4}{x-2}=\dfrac{x^2\left(x-2\right)+4}{x-2}=x^2+\dfrac{4}{x-2}\)

...

d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}=\dfrac{x^2\left(2x+1\right)+2x+2}{2x+1}=x^2+\dfrac{2x+2}{2x+1}\)

Khi đó lí luận cho \(2x+2⋮2x+1\)

\(\Rightarrow\left(2x+1\right)+1⋮2x+1\)

\(\Rightarrow1⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(1\right)\)

...

e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}=\dfrac{x^2\left(3x-1\right)-2x\left(3x-1\right)+3\left(3x-1\right)+2}{3x-1}\)

\(=\dfrac{\left(x^2-2x+3\right)\left(3x-1\right)+2}{3x-1}=\left(x^2-2x+3\right)+\dfrac{2}{3x-1}\)

...

f) \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\dfrac{\left(x^2\right)^2-4^2}{\left(x-2\right)^2\left(x^2+4\right)}\)

\(=\dfrac{\left(x^2-4\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\dfrac{x^2-4}{\left(x-2\right)^2}=\dfrac{x+2}{x-2}=\dfrac{\left(x-2\right)+4}{x-2}=1+\dfrac{4}{x-2}\)

....

10 tháng 8 2017

thank you

27 tháng 7 2018

Những hằng đẳng thức đáng nhớ (Tiếp 1)

27 tháng 7 2018

Những hằng đẳng thức đáng nhớ (Tiếp 1)