Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, thay m=2 vào phương trình (1) ta được:
x^2-6.x+3=0
có: \(\Delta\)1=(-6)^2-4.3=24>0
vậy phương trình có 2 nghiệm phân biệt :
x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6
x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6
b, từ phương trình (1) ta có :
\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4
=8m+8
để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0
<=>m\(\ge\)-1
m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2
theo vi ét=>x1+x2=2m+2
lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)
vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1
\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)
a,Thay m=2 vào pt (1) có
\(x^2-2\left(2+1\right)x+2^2-1=0\)
⇔\(x^2-6x+3=0\)
⇔\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)
Vậy pt luôn có 2 nghiệm
b, để pt có 2 nghiệm pb khi m khác 1
c, để pt có nghiệm kép khi m = 1
d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)
Ta có \(x_1-2x_2=0\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)
Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)
Để phương trình (1) có nghiệm thì:
\(\Delta'\ge0\Rightarrow\left(m-1\right)^2-\left(2m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-2m+5\ge0\)
\(\Leftrightarrow\left(m-2\right)^2+2\ge0\) (luôn đúng)
Vậy với \(\forall m\) thì phương trình (1) luôn có nghiệm.
Theo định lí Vi-et cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có: \(x_1< 2< x_2\Rightarrow\left\{{}\begin{matrix}x_1-2< 0\\x_2-2>0\end{matrix}\right.\)
\(\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)
\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)
\(\Rightarrow2m-5-2.2\left(m-1\right)+4< 0\)
\(\Rightarrow2m-5-4m+4+4< 0\)
\(\Rightarrow-2m+3< 0\)
\(\Rightarrow m>\dfrac{3}{2}\)
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
Để phương trình \(x^2+\left(m-1\right)x+5m-6=0\)có 2 nghiệm riêng biệt là \(x_1;x_2\)
\(\Rightarrow\Delta>0\)
\(\Rightarrow m^2-22m+25>0\)
\(\Rightarrow m\in\left(-\infty;11-4\sqrt{6}\right)\)
\(\Rightarrow m\in\left(\infty;11+4\sqrt{6}\right)\)
Khi đó 2 nghiệm của phương trình là:
\(x_1=\frac{\left(1-m\right)+\sqrt{\Delta}}{2}\)và \(x_2=\frac{\left(1-m\right)-\sqrt{\Delta}}{2}\) Tiếp tục thay vào làm tiếp
Hoặc ta cũng có thể làm theo cách khác bằng cách áp dụng định lý Vi-et ta có hệ phương trình sau:
\(\hept{\begin{cases}4x_1+3x_2=1\\x_1+x_2=m-1\\x_1x_2=5m-6\end{cases}}\)Tiếp tục thay vào rồi giải phương trình :)