Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường thẳng y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung nghĩa là chúng có cùng tung độ góc.
Suy ra: 5 – m = 3 + m ⇔ 2m = 2 ⇔ m = 1
Vậy với m = 1 thì đồ thị của các hàm số y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung.
Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:
hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m
hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m
Vì cùng là tung độ của giao điểm nên:
3 + m = 5 – m => m = 1
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
(Lưu ý: Điểm trên trục tung có hoành độ là 0)
Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:
hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m
hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m
Vì cùng là tung độ của giao điểm nên:
3 + m = 5 – m => m = 1
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
(Lưu ý: Điểm trên trục tung có hoành độ là 0)
Để hai đồ thị hàm số y = − 2 x + m + 2 v à y = 5 x + 5 – 2 m cắt nhau tại một điểm trên trục tung thì − 2 ≠ 5 m + 2 = 5 − 2 m ⇔ 3 m = 3 ⇔ m = 1
Đáp án cần chọn là: A
phương trình hoành độ giao điểm là
2x+(3+m)=3x+(5-m)
<=>2x+3+m=3x+5-m(1)
thay x=0 ta đk
(1)<=>3+m=5-m
<=>2m=2
<=>m=1
Để hai đồ thị hàm số y = 3 x – 2 m v à y = − x + 1 – m cắt nhau tại một điểm trên trục tung thì 3 ≠ − 1 − 2 m = 1 − m ⇔ m = − 1
Đáp án cần chọn là: C
Để hai đường thẳng y=-x+(2m-3) và \(y=x+\left(\sqrt{2}m-1\right)\) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}2m-3=\sqrt{2}m-1\\-1\ne1\left(đúng\right)\end{matrix}\right.\)
=>\(m\left(2-\sqrt{2}\right)=-1+3=2\)
=>\(m=\dfrac{2}{2-\sqrt{2}}=2+\sqrt{2}\)