Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng )
\(\Leftrightarrow\)\(3m-6+12m+4< 0\)
\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)
\(\Leftrightarrow\)\(15m-2< 0\)
\(\Leftrightarrow\)\(15m< 2\)
\(\Leftrightarrow\)\(m< \frac{2}{15}\)
Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\frac{m-4}{6m+9}>0\)
\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) )
\(\Leftrightarrow\)\(m>4\)
Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)
Chúc bạn học tốt ~
a) Bpt <=> \(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow3\left(m-2\right)+4\left(3m+1\right)< 0\)
\(\Leftrightarrow3m-6+12m+4< 0\)
\(\Leftrightarrow3m+12m-2< 0\)
\(\Leftrightarrow15m-2< 0\)
\(\Leftrightarrow15m< 2\)
\(\Leftrightarrow m< \frac{2}{15}\)
Vậy để bt đạt giá trị âm thì m < 2/15
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a) \(ĐKXĐ:\hept{\begin{cases}a\ne-3\\a\ne\pm2\end{cases}}\)
\(M=\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{\left(a-2\right)^2-\left(a+2\right)^2-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{a^2-4a+4-a^2-4a-4-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a^2-8a}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a}{a-2}\)
\(\Leftrightarrow M=\frac{4a^2\left(a-2\right)}{\left(a+3\right)\left(a-2\right)}\)
\(\Leftrightarrow M=\frac{4a^2}{a+3}\)
b) Để M = 1
\(\Leftrightarrow\frac{4a^2}{a+3}=1\)
\(\Leftrightarrow4a^2=a+3\)
\(\Leftrightarrow4a^2-a-3=0\)
\(\Leftrightarrow\left(4a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4a+3=0\\a-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\left(tm\right)\\a=1\left(tm\right)\end{cases}}\)
Vậy để \(M=1\Leftrightarrow a\in\left\{-\frac{3}{4};1\right\}\)
c) Để M > 0
\(\Leftrightarrow\frac{4a^2}{a+3}>0\)
\(\Leftrightarrow a+3>0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a>-3\)
Vậy để \(M>0\Leftrightarrow a>-3\)
Để M < 0
\(\Leftrightarrow\frac{4a^2}{a+3}< 0\)
\(\Leftrightarrow a+3< 0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a< -3\)
Vậy để \(M< 0\Leftrightarrow a< -3\)