Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Chia phương trình cho \(x^2\) ta có:
\(x^2+\frac{1}{x^2}+ax+\frac{b}{x}+2=0\left(1\right)\)
\(\left(1\right)-\left(ax+\frac{b}{x}\right)=x^2+\frac{1}{x^2}+2\Leftrightarrow\left(ax+\frac{b}{x}\right)^2=\left(x^2+\frac{1}{x^2}+2\right)^2\)
Áp dụng BĐT Bunhiacopski ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)
Vậy \(\left(ax+\frac{b}{x}\right)^2\le\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\) nên \(\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\ge\left(x^2+\frac{1}{x^2}+2\right)^2\)
Đặt \(x^2+\frac{1}{x^2}=t\left(t\ge2\right)\) nên \(a^2+b^2\ge\frac{\left(t+2\right)^2}{t}=t+\frac{4}{t}+4\ge2\sqrt{t.\frac{4}{t}}+4=8\)
Dấu "=" xảy ra khi \(x^2+\frac{1}{x^2}=2\Leftrightarrow x=1\) và \(a=b\) sẽ tìm ra a
Gọi m là nghiệm chung của 2 phương trình thì ta có:
\(\hept{\begin{cases}m^2+am+6=0\\m^2+bm+12=0\end{cases}}\)
\(\Rightarrow2m^2+\left(a+b\right)m+18=0\)
Để phương trình có nghiệm thì
\(\Delta=\left(a+b\right)^2-144\ge0\)
\(\Leftrightarrow\left|a+b\right|\ge12\)
Ta lại có:
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)
Tới đây thì đơn giản rồi nên b tự làm nhé.
Chia cho X2 vì X=9 không là nghiệm của PT
Đặt t=X+\(\frac{1}{x}\)
=> t2+at+b-2=0
=>(t2-2)2=(at+b)2nhỏ hơn hoặc bằng (a2+b2)(1+t2)
=>a2+b2 lớn hơn hoặc bằng \(\frac{\left(t^2-2\right)^2}{t^2+1}\)lớn hơn hoặc bằng 0,8 dấu bằng khi..............
Gọi nghiệm chung của 2 phương trình là m
Ta có:\(m^2+am+1=0;m^2+bm+17=0\)
\(\Rightarrow2m^2+m\left(a+b\right)+18=0\)
Xét \(\Delta=\left(a+b\right)^2-144\ge0\Rightarrow\left|a+b\right|\ge12\)
Mà \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)
Xét \(a+b=12\Rightarrow.....\)
Xét \(a+b=-12\Rightarrow....\)
Mấy chỗ ..... bạn tự làm nốt
Để 2 pt có nghiệm \(\hept{\begin{cases}\Delta_1=b^2-4.1102.2011\ge0\\\Delta_2=b^2-4.2011.1102\ge0\end{cases}}\Leftrightarrow b^2\ge4.2011.1102\Leftrightarrow\orbr{\begin{cases}b\ge2\sqrt{2011.1102}\\b\le-2\sqrt{2011.1102}\end{cases}}\)
Giả sử x0 là nghiệm chung của 2 pt (1) và (2) \(\Rightarrow\)\(\hept{\begin{cases}2011x_0^2+bx_0+1102=0\left(3\right)\\1102x_0^2+bx_0+2011=0\left(4\right)\end{cases}}\)
trừ theo vế 2 pt (3) và (3) ta được: \(909x_0^2-909=0\)\(\Leftrightarrow\)\(x_0^2=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x_0=1\\x_0=-1\end{cases}}\)
+) Với x0=1, thay vào pt (3) ta đc: \(2011+b+1102=0\)\(\Leftrightarrow\)\(b=-3113\left(tm\right)\)
+) Với x0=-1, thay vào pt (3) ta đc: \(1102-b+2011=0\)\(\Leftrightarrow\)\(b=3113\left(tm\right)\)
...