Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a+b-2\sqrt{ab}\ge0\)
<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )
=> đpcm
b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)
<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)
<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)
<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
=> đpcm
Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:
\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)
Xét vế trái ta có:
\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b
\(\left(\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\right)^2\\ =\dfrac{a+\sqrt{a^2-b}+a-\sqrt{a^2-b}}{2}+2\sqrt{\dfrac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{4}}\\ =\dfrac{2a}{2}+2\sqrt{\dfrac{a^2-a^2+b}{4}}\\ =a+2\sqrt{\dfrac{b}{4}}=a+\dfrac{2\sqrt{b}}{2}=a+\sqrt{b}\\ \Rightarrow\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}=\sqrt{a+\sqrt{b}}\)
Câu b bạn sửa lại đề
\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)
a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
\(\Rightarrow\left(\sqrt{a+\sqrt{b}}\mp\sqrt{a-\sqrt{b}}\right)^2=\left(\sqrt{2\left(a\mp\sqrt{a^2-b}\right)}\right)^2\Leftrightarrow a+\sqrt{b}+a-\sqrt{b}\mp2\sqrt{\left(a+\sqrt{b}\right)\cdot\left(a-\sqrt{b}\right)}=2a\mp2\sqrt{a^2-b}\Leftrightarrow2a\mp2\sqrt{a^2-b}=2a\mp2\sqrt{a^2-b}\) (luôn đúng) \(\Rightarrowđpcm\)
đk : \(a\ge0;b\ge0;a\ne b\)
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)
b) đk : \(a\ge0;b\ge0;a\ne b\)
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)
= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)
câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )
Cả 2 vế đều không âm nên bình phương hai vế ta được bất đẳng thức tương đương. Điều phải chứng minh tương đương với:
\(\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+2\sqrt{ab}+b}{4}\ge0\)
\(\Leftrightarrow\dfrac{a-2\sqrt{ab}+b}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)
Bất đẳng thức cuối cùng luôn đúng.