K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GV
23 tháng 4 2017

Cả 2 vế đều không âm nên bình phương hai vế ta được bất đẳng thức tương đương. Điều phải chứng minh tương đương với:

\(\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+2\sqrt{ab}+b}{4}\ge0\)

\(\Leftrightarrow\dfrac{a-2\sqrt{ab}+b}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)

Bất đẳng thức cuối cùng luôn đúng.

3 tháng 7 2018

a) \(a+b-2\sqrt{ab}\ge0\)

<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )

=> đpcm

b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)

<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)

<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)

<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)

<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

=> đpcm

3 tháng 7 2018

thanks!!!

21 tháng 9 2018

Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:

\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)

21 tháng 9 2018

Xét vế trái ta có:

\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

17 tháng 7 2017

Biến đổi tương đương:

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

=> (1) đúng

Dấu "=" xảy ra khi a = b

10 tháng 10 2021

\(\left(\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\right)^2\\ =\dfrac{a+\sqrt{a^2-b}+a-\sqrt{a^2-b}}{2}+2\sqrt{\dfrac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{4}}\\ =\dfrac{2a}{2}+2\sqrt{\dfrac{a^2-a^2+b}{4}}\\ =a+2\sqrt{\dfrac{b}{4}}=a+\dfrac{2\sqrt{b}}{2}=a+\sqrt{b}\\ \Rightarrow\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}=\sqrt{a+\sqrt{b}}\)

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

30 tháng 6 2021

\(\Rightarrow\left(\sqrt{a+\sqrt{b}}\mp\sqrt{a-\sqrt{b}}\right)^2=\left(\sqrt{2\left(a\mp\sqrt{a^2-b}\right)}\right)^2\Leftrightarrow a+\sqrt{b}+a-\sqrt{b}\mp2\sqrt{\left(a+\sqrt{b}\right)\cdot\left(a-\sqrt{b}\right)}=2a\mp2\sqrt{a^2-b}\Leftrightarrow2a\mp2\sqrt{a^2-b}=2a\mp2\sqrt{a^2-b}\) (luôn đúng) \(\Rightarrowđpcm\)

21 tháng 6 2017

đk : \(a\ge0;b\ge0;a\ne b\)

a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)

b) đk : \(a\ge0;b\ge0;a\ne b\)

\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)

= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)

26 tháng 6 2023

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

26 tháng 6 2023

tiện bạn coi giùm mình lại đề câu b luôn, nó sao sao ấy:v