K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Để làm được bài toán trên, trước tiên ta phải chứng minh được bất đẳng thức đơn giản sau:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)  \(\left(1\right)\)  với mọi  \(a,b,c,d\in R\)  và  \(x,y>0\)

Thật vậy,  bất đẳng thức  \(\left(1\right)\)  được viết lại thành:

\(ay^2\left(x+y\right)+b^2x\left(x+y\right)\ge\left(a+b\right)^2xy\)  (nhân cả hai vế của bđt với  \(xy\left(x+y\right)>0\))

 \(\Leftrightarrow\)  \(\left(ay-bx\right)^2\ge0\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  hiển nhiên đúng. Mặt khác, các phép biến đổi trên tương đương nên bđt  \(\left(1\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi  \(\frac{a}{x}=\frac{b}{y}\)

Khi đó,  với  \(6\)  số  \(a,b,c,x,y,z\)  bất kỳ và  \(x,y,z>0\), áp dụng bất đẳng thức \(\left(1\right)\)  hai lần, ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)  \(\left(3\right)\)

Biển đổi vế trái của bất đẳng thức \(\left(\text{*}\right)\), và kết hợp sử dụng bđt \(\left(3\right)\), ta có:

\(VT\left(\text{*}\right)=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)

               \(=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Mà  \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

nên khi đó,  \(VT\left(\text{*}\right)\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)   

Giờ, ta chỉ cần chứng minh   \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)  

Thật vậy, ta dễ dàng chứng minh được:  \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Do đó,  \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Chia cả hai vế của bđt cho  \(a+b+c>0\). Không đổi chiều bất đẳng thức, ta có:

\(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\)  \(\left(đpcm\right)\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

Vậy,   \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)  với mọi  \(a,b,c\in R^+\)

10 tháng 4 2016

cảm ơn bạn nhìu nhé!

7 tháng 2 2016

Toán lớp 8 hay là toán lớp 6 vậy. Dễ quá đi

7 tháng 2 2016

Áp dụng bất đẳng thức Cô-si:  \(\frac{x+y}{2}\ge\sqrt{xy}\) \(\Rightarrow\) \(x+y\ge2\sqrt{xy}\) trong đó \(x,y,z\ge0\) .

Ta có:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2\sqrt{\frac{a^2}{4}}=2.\frac{a}{2}=a\)  \(\left(1\right)\)

\(\frac{b^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{b^2}{c+a}.\frac{c+a}{4}}=2\sqrt{\frac{b^2}{4}}=2.\frac{b}{2}=b\)  \(\left(2\right)\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}.\frac{a+b}{4}}=2\sqrt{\frac{c^2}{4}}=2.\frac{c}{2}=c\)  \(\left(3\right)\)

Cộng  \(\left(1\right)\)  \(;\) \(\left(2\right)\)  và  \(\left(3\right)\)  vế theo vế, ta được:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)

Vậy,  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\ge\frac{a+b+c}{2}\)  

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

10 tháng 2 2016

\(1.\)  Đang duyệt

\(2a.\)

Ta có: 

\(P-Q=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\frac{b^3}{a^2+ab+b^2}-\frac{c^3}{b^2+bc+c^2}-\frac{a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}+\frac{\left(b-c\right)\left(b^2+bc+c^2\right)}{b^2+bc+c^2}+\frac{\left(c-a\right)\left(c^2+ac+a^2\right)}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=a-b+b-c+c-a\)  (do  \(a,b,c\ne0\)  )

\(\Leftrightarrow\)  \(P-Q=0\)

Vậy,  \(P=Q\)  \(\left(đpcm\right)\)

10 tháng 2 2016

\(1.\)

Theo đề bài, ta có:        

\(a^3=b^2+b+\frac{1}{3}\)  \(\left(1\right)\)

\(b^3=c^3+c^2+\frac{1}{3}\)  \(\left(2\right)\)

\(c^3=a^3+a^2+\frac{1}{3}\)  \(\left(3\right)\)

Vì  \(b^2+b+\frac{1}{3}=\left(b+\frac{1}{2}\right)^2+\frac{1}{12}\ge\frac{1}{12}>0\) nên từ \(\left(1\right)\)  \(\Rightarrow\)  \(a^3>0\) , tức là  \(a>0\)

Tương tự,  \(b,c>0\)

Do vai trò hoán vị của các ẩn \(a,b,c\)  là như nhau nên có thể giả sử  \(a=max\left\{a,b,c\right\}\)  hay  \(a\ge b\)   \(;\)  \(a\ge c\)

Do đó,

\(\text{+) }\) Từ  \(\left(1\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(a^3=b^2+b+\frac{1}{3}\le a^2+a+\frac{1}{3}=c^3\)

Theo đó,  \(a^3\le c^3\)  hay \(a\le c\)  

Mà \(a\ge c\)  \(\left(cmt\right)\)

\(\Rightarrow\)  \(a=c\)   \(\left(\text{*}\right)\)

Lại có:

\(\text{+) }\) Từ \(\left(2\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(b^3=c^2+c+\frac{1}{3}=a^2+a+\frac{1}{3}=c^3\)  (do  \(a=c\)  )

nên  \(b^3=c^3\) , tức là  \(b=c\)  \(\left(\text{**}\right)\)

Vậy, từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\) , suy ra  \(a=b=c\)