\(P=\sqrt{4a+1}+\sqrt{5b+1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

helpppppppp

9 tháng 11 2021

biến b để làm gì thế bạn???

18 tháng 12 2019

Đề thi học kỳ 1 trường Ams

**Min

Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)

\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)

Khi đó:

\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)

Ta có:

\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)

Tương tự cộng lại:

\(P\ge3-\left(a^2+b^2+c^2\right)=2\)

dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.

**Max

Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)

Áp dụng:

\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)

\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)

\(=\sqrt{3\left(a+b+c\right)+3}\)

\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)

Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

20 tháng 10 2021

Ta có: \(4=\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\)

\(\le\frac{a+b}{2}+\frac{a+1}{2}+\frac{b+1}{2}+1\Rightarrow a+b\ge2\)

Do đó \(P=\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\ge2\)

Dấu bằng xảy ra khi a = b = 1