Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì -4<x<9 nên 9-x>0 và x+4>0
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được như sau \(\frac{1}{9-x}+\frac{1}{x+4}\ge\frac{4}{9-x+x+4}=\frac{4}{13}\)
\(P_{min}=\frac{4}{13}\) khi \(9-x=x+4\Leftrightarrow x=\frac{5}{2}\)
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
Áp dụng bất đẳng thức Cosi, ta có:
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được:
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1)
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2
Đúng thì tick nhé !
\(a;b>0\)
\(a+b\ge2\sqrt{ab};\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra <=> a=b
a/d bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow P\ge\frac{4}{9-x+x+4}=\frac{4}{13}\)
Dấu "=" xảy ra <=>\(9-x=x+4\)<=>\(x=\frac{5}{2}\)