Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)
Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)
Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Cộng các vế lại, ta được :
\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)
\(\Rightarrow B\le6\)
Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x;y;z\le2\)
\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}=9\)
Dấu "=" xảy ra khi \(x=y=z\)
Nhưng như vậy thì dễ quá, nên chắc đây là 1 bài toán tìm GTLN
Tìm GTLN thì nó chính là bài toán này, làm biếng gõ lại:
Câu hỏi của Trần Minh Hiển - Toán lớp 9 | Học trực tuyến
Sau 3 tháng cuối cùng cũng thanh toán được :|
Điểm rơi \(a=0;b=\dfrac{12}{23};c=\dfrac{18}{23}\)
Áp dụng BĐT AM-GM ta có:
\(b^2\left(c-b\right)=\dfrac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\dfrac{1}{2}\left(\dfrac{b+b-2c-2b}{3}\right)^3=\dfrac{4c^3}{27}\)
Và \(a^2\left(b-c\right)\le0\)
\(Q \le \frac{4c^3}{27}+c^2(1-c)=c^2-\frac{23}{27}.c^3=c^2(1-\frac{23}{27}.c)\)
\(=\frac{54^2}{23^2}.c^2.(1-\frac{23}{27}.c) \le \frac{1}{3^3}.\frac{54^2}{23^2}=\frac{108}{529}\)
Bạn tham khảo:
Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\) Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24
bài hay và bây giờ sẽ là giải
đặt a+1 = x , b+1 = y , c+1 = z
ta có A =\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
giả sử \(1\le x\le y\le z\le2\) kết hợp với giả thiết ta có thể dễ dàng chứng minh được \(\frac{x}{y}+\frac{y}{x}\le2.5\) và \(\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\le4.5\)
A =\(3+\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng chứng minh trên ta có A\(\le10\)
vậy Max A = 10 khi \(\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=z=2\end{matrix}\right.\)
suy ra \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=b=0\\c=1\end{matrix}\right.\\\left\{{}\begin{matrix}a=1\\b=c=0\end{matrix}\right.\end{matrix}\right.\)