K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Ta có :

\(\left(3x^2+2y\right)\left(2y-3x^2\right)\)

\(=\left(2y+3x^2\right)\left(2y-3x^2\right)\)

\(=\left(2y\right)^2-\left(3x^2\right)^2\)

\(=4y^2-9x^4\)

 

\(4x^4-4x^2+1=\left(2x^2-1\right)^2\)

\(\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(36-12x+x^2=\left(6-x\right)^2\)

\(\left(x+5y\right)^2=x^2+10xy+25y^2\)

\(4x^2-12x+9=\left(2x-3\right)^2\)

\(\left(x-2y\right)^2=x^2-4xy+4y^2\)

27 tháng 6 2019

(x+2y)(2y-x) =(2y+x)(2y-x)

                     =(2y)\(^2\)-x\(^2\)

                     =4y\(^2\)   -x\(^2\)

(\(\frac{1}{2}\)-3x)(\(\frac{1}{2}\)+3x)=(\(\frac{1}{2}\))\(^2\)-(3x)\(^2\)

                                   =\(\frac{1}{4}\)-9x\(^2\)

Kết quả: \(\frac{1}{4}-9x^2\)

5 tháng 9 2020

a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)

b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)

\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)

\(=\left(3x-2y+2\right)^2\)

5 tháng 9 2020

a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1=\left(2x+2\right)^2\)

b) \(\left(3x-2y\right)^2+4\left(3x-2y\right)+4=\left(3x-2y+2\right)^2\)

19 tháng 7 2018

\(4x^2-20xy^2+25y^4=\left(2x\right)^2-2.2x.5y^2+\left(5y^2\right)^2=\left(2x-5y^2\right)^2\)

Áp dụng hằng đẳng thức: \(\left(A-B\right)^2=A^2-2AB+B^2\)

19 tháng 7 2018

\(4x^2-20xy^2+25y^4\)

\(=\left(2x\right)^2-2\cdot2x\cdot5y^2+\left(5y\right)^2\)

\(=\left(2x-5y\right)^2\)

6 tháng 7 2021

a/ \(36+x^2-12x=x^2-2x.6+6^2=\left(x+6\right)^2\)

b/ \(\left(x+2y\right)^2=x^2+2x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)

c/ \(\left(\sqrt{x}-2\sqrt{y}\right)^2=\left(\sqrt{x}\right)^2-2\sqrt{x}.2\sqrt{y}+\left(2\sqrt{y}\right)^2=x-4\sqrt{xy}+4y\)

13 tháng 6 2017

(3x+2y)\(=9x^2+12xy+4y^2\)

22 tháng 7 2023

\(...=A=x^3-3x^2+3x-1+1013\)

\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)

\(...B=x^3-6x^2+12x-8-100\)

\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)

\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)

\(...D=x^3+9x^2+27x+9+2018\)

\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)

22 tháng 7 2023

a) \(A=x^3-3x^2+3x+1012\)

\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)

\(A=\left(x-1\right)^3+1013\)

Thay x=11 vào A ta có:

\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)

b) \(B=x^3-6x^2+12x-108\)

\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)

\(B=\left(x-2\right)^3-100\)

Thay x=12 vào B ta có:

\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)

c) \(C=x^3+6x^2y+12xy^2+8y^3\)

\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)

\(C=\left(x+2y\right)^3\)

Thay x=-2y vào C ta được:

\(C=\left(-2y+2y\right)^3=0^3=0\)

d) \(D=x^3+9x^2+27x+2027\)

\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)

\(D=\left(x+3\right)^3+2000\)

Thay x=-23 vào D ta có:

\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)

23 tháng 7 2018

\(\frac{1}{4}x^6-0,01y^2=\left(\frac{1}{2}x^3\right)^2-\left(0,1y\right)^2\)

                            \(=\left(\frac{1}{2}x^3-0,1y\right).\left(\frac{1}{2}x^3+0,1y\right)\)

Vậy \(\frac{1}{4}x^6-0,01y^2\)\(=\left(\frac{1}{2}x^3-0,1y\right).\left(\frac{1}{2}x^3+0,1y\right)\)

Tham khảo nhé ~

23 tháng 7 2018

\(\frac{1}{4}x^6-0.01y^2\)

\(=\left(\frac{1}{2}x^3\right)^2-\left(0.1y\right)^2\)

\(=\left(\frac{1}{2}x^3-0.1y\right)\left(\frac{1}{2}x^3+0.1y\right)\)

Mong lần này không sai nữa ......