Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: B(6) = {0; 6; 12; 18; 29; 30; 36; 42; 48;.. }
B(8) = {0; 8; 16; 24; 32; 40; 48;..}
=> BC(6, 8) = {0; 24; 48;...}
Vậy số nhỏ nhất khác 0 trong tập hợp BC(6, 8) là 24
* Nhận xét: Số nhỏ nhất khác 0 trong tập hợp bội chung của hai số 6, 8 là ước của các bội chung của 6 và 8.
- Ta có: B(3) = {0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39;… }
B(4) = {0; 4; 8; 12; 16; 20; 24; 38; 32; 36; 40; 44; 48; 52;...}
B(8) = {0; 8; 16; 24; 32; 40; 48;...}
=> BC(3, 4, 8) = {0; 24; 48;...}
Vậy số nhỏ nhất khác 0 trong tập hợp BC(3, 4, 8) là 24.
* Nhận xét: Số nhỏ nhất khác 0 trong tập hợp bội chung của ba số 3, 4, 8 là ước của các bội chung của 3, 4, 8.
a) A = {0; 48; 96; 144, 192;...}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i. 24 = 23.3; 30 = 2.3.5
=> BCNN(24,30) = 23. 3.5= 120
=> BC(24, 30) = B(120) = {0; 120; 240; 360;...}
ii. 42 = 2.3.7; 60 = 22.3.5
=> BCNN(42, 60) = 420
=> BC(42, 60) = B(420) = {0; 420, 840; 1260;…}.
iii. 60 = 22.3.5
150 = 2.3.52
=> BCNN(60, 150) = 22.3.52 = 300
=> BC(60, 150) = B(300) = {0; 300, 600, 900, 1200;...}.
iv. 28 = 22.7; 35 = 5.7
=> BCNN(28, 35) = 22.5.7 = 140
=> BC(28, 35) = B(140) = {0; 140; 280; 420, 560;...}.
Bài 3:
a: \(\dfrac{11}{15}+\dfrac{9}{10}=\dfrac{110+135}{150}=\dfrac{245}{150}=\dfrac{49}{30}\)
b: \(\dfrac{5}{6}+\dfrac{7}{9}+\dfrac{11}{12}=\dfrac{30+28+33}{36}=\dfrac{91}{36}\)
a, A = {0;2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34;36;38}
b, B = {0;5;10;15;20;25;30;35}
c, A ∩ B = {0;10;20;30}
d, (A ∩ B) ⊂ A; (A ∩ B) ⊂ B
– Nhân 6 lần lượt với 0; 1; 2; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; … ta được bội của 6 là 0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36 ; 42 ; 48 ; …
Tập hợp bội của 6 nhỏ hơn 40 là A = {0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36}.
– Tương tự như trên : tập hợp bội của 9 nhỏ hơn 40 là : B = {0 ; 9 ; 18 ; 27 ; 36}.
– M = A ∩ B.
Mỗi phần tử của M đều là phần tử của A và B nên M ⊂ A; M ⊂ B.
a: Số nhỏ nhất là 36
Không có số lớn nhất
b: BC(12;18)=B(BCNN(12;18))