K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì (d1)//(d) nên a=2

Vậy: (d1): y=2x+b

Thay x=2 và y=-5 vào (d1), ta được:

b+4=-5

hay b=-9

1 tháng 2 2022

a, Cho pt đt (d) có dạng y = ax + b 

(d) đi qua N(2;3) => 3 = 2a + b 

(d) // y = 2x - 5 <=> \(\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)

Thay a = 2 ta được : 3 = 4 + b => b = -1 (tmđk ) 

Vậy ptđt (d) có dạng y = 2x - 1 

b, Hoành độ giao điểm tm pt 

\(x^2-2x-3=0\)ta có : a - b + c = 0 

Vậy pt có 2 nghiệm \(x_1=-1;x_2=3\)

Với x = -1 => y = 1 

Với x = 3 => y = 9 

Vậy A(-1;1) ; B(3;9) 

c, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)

Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)

Thay vào ta được : 

\(A=4-3\left(-5\right)=19\)

1 tháng 2 2022

mình xin bạn làm đc tử tế thì  làm cứ làm v ai hiểu nổi

13 tháng 5 2017

Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:

\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)

\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)

Khi đó hàm số (p) có dạng: \(y=-x^2\)

Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)

Vì (d) song song với đường thẳng \(y=-2x-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)

Xét phương trình hoành độ tiếp điểm của (p) và (d) :

\(-x^2=-2x+b\)

\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)

Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)

Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )

Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)

13 tháng 5 2017

Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:

\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)

Vậy hệ số a của (P) là -1

b,Giả sử pt đường thẳng (d) có dạng y=ax+b

Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:

\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Khi đó phương trình đường thẳng (d) trở thành y=-2x+b

Ta có phương trình hoành độ giao điểm của (d) và (P) là

\(-x^2+2x-b=0\) (*)

Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)

Vậy phương trình đường thẳng (d) là y=-2x+1

b: f(-2)=-1/2*(-2)^2=-1/2*4=-2

=>M(-2;-2)

f(1)=-1/2*1^2=-1/2

=>N(1;-1/2)

Gọi (d): y=ax+b là phương trình đường thẳng cần tìm

Theo đề, ta có hệ: -2a+b=-2 và a+b=-1/2

=>a=1/2 và b=-1

=>y=1/2x-1

c: (D)//y=1/2x-1 nên (D): y=1/2x+b

PTHĐGĐ là:

-1/2x^2-1/2x-b=0

=>x^2+x+2b=0

Δ=1^2-4*1*2b=-8b+1

Để (P) cắt (D) tại một điểm duy nhất thì -8b+1=0

=>b=1/8

31 tháng 1 2022

Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm A (2; 1).

\(\Rightarrow1=2a+b.\) (1)

Xét phương trình hoành độ giao điểm của hai đường thẳng y = -x và y = -2x + 1, ta có:

\(-x=-2x+1.\\ \Leftrightarrow x-2x+1=0.\\\Leftrightarrow\left(x-1\right)^2=0. \\ \Leftrightarrow x=1.\\ \Rightarrow y=-1.\)

\(\Rightarrow\) B (1; -1).

Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm B (1; -1).

\(\Rightarrow-1=a+b.\) (2)

Từ (1); (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}1=2a+b.\\-1=a+b.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=1.\\a+b=-1.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2.\\b=-3.\end{matrix}\right.\)

\(\Rightarrow y=2x-3.\)

31 tháng 1 2022

tks nhìu nhìu

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

8 tháng 11 2023

Gọi (d'): y = ax + b

Do (d') // (d) nên a = -1/2

⇒ (d'): y = -x/2 + b

Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:

-3/2 + b = 0

⇔ b = 3/2

Vậy (d'): y = -x/2 + 3/2

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$

Đường thẳng $OM$ có dạng: $y=ax$

$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$

$\Rightarrow a=\frac{3}{2}$

Vậy ĐT $OM$ là: $y=\frac{3}{2}x$

b) Gọi PTĐT $CE$ có dạng $y=ax+b$

PT hoành độ giao điểm giữa $(P)$ và $CE$ là:

$\frac{-x^2}{2}-ax-b=0$

$\Leftrightarrow x^2+2ax+2b=0(*)$

$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm

\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)

Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$