Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y'=3x^2-3\Rightarrow k=y'\left(1\right)=0\)
4.
\(y'=-2x+2=0\Rightarrow x=1\)
\(y''=-2< 0\Rightarrow x=1\) là điểm cực đại
Vậy hàm số ko có điểm cực tiểu
5.
Pt hoành độ giao điểm: \(\frac{x^2-4}{x-1}=0\Rightarrow x^2-4=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) có 2 giao điểm với trục Ox
6.
\(\lim\limits_{x\rightarrow6}\frac{x+4}{-x+6}=\infty\Rightarrow x=6\) là tiệm cận đứng
7.
\(y'=2x+2\)
Tiếp tuyến song song với trục Oy nên có hệ số góc \(k=0\)
\(\Rightarrow2x+2=0\Rightarrow x=-1\Rightarrow y=-4\)
Vậy pttt có dạng \(y+4=0\)
9.
Hai tiệm cận có pt lần lượt \(x=1\) và \(y=1\)
Tích khoảng cách từ điểm M đến 2 tiệm cận:
\(d=\left|x_0-1\right|.\left|\frac{x_0+4}{x_0-1}-1\right|=\left|\left(x_0-1\right).\frac{5}{\left(x_0-1\right)}\right|=5\)
10.
Hàm \(y=2x\) có \(y'=2>0\) đồng biến trên miền xác định
`a)TXĐ: R`
`b)TXĐ: R\\{0}`
`c)TXĐ: R\\{1}`
`d)TXĐ: (-oo;-1)uu(1;+oo)`
`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`
`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`
`h)TXĐ: (-oo;0) uu(2;+oo)`
`k)TXĐ: R\\{1/2}`
`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`
`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`
`<=>x > 2`
`=>TXĐ: (2;+oo)`
câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?
\(\overrightarrow{AB}=\left(3;-4;2\right)\)
\(\overrightarrow{AM}=\left(x-2;y+1;-4\right)\)
Để 3 điểm thẳng hàng
\(\Leftrightarrow\frac{x-2}{3}=\frac{y+1}{-4}=\frac{-4}{2}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.3+2=-4\\y=-4.\left(-2\right)-1=7\end{matrix}\right.\)
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
Gọi M( x0; y0) , x 0 ≠ - 1 là tọa độ tiếp điểm của d và (C).
Khi đó d có hệ số góc y ' ( x 0 ) = 1 x 0 + 1 2 và có phương trình là :
Vì d cách đều A: B nên d đi qua trung điểm I( -1; 1) của AB hoặc cùng phương với AB .
TH1: d đi qua trung điểm I( -1; 1) , thì ta luôn có:
,
phương trình này có nghiệm x0= 1
Với x0= 1 ta có phương trình tiếp tuyến d : 1 4 x + 5 4
TH2: d cùng phương với AB , tức là d và AB có cùng hệ số góc, khi đó
hay
1 x 0 + 1 2 = 1 ⇔ x 0 = - 2 h o ặ c x 0 = 0
Với x0 = -2 ta có phương trình tiếp tuyến d: y= x+ 5.
Với x0 =0 ta có phương trình tiếp tuyến d: y=x+ 1.
Vậy, có 3 tiếp tuyến thỏa mãn đề bài: y = 1 4 x + 5 4 , y= x+ 5, y=x+ 1
Chọn D.