Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đường thẳng có hệ số góc 3 nên nhận (3;-1) là 1 vtpt
\(\Rightarrow3\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow3x-y-5=0\)
b.
Đường thẳng có 1 vtcp là (2;-5) nên nhận (5;2) là 1 vtpt
Phương trình: \(5\left(x+5\right)+2\left(y-2\right)=0\Leftrightarrow5x+2y+21=0\)
c.
Đường thẳng vuông góc \(\Delta\) nên nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình: \(4x-3y=0\)
d.
Đường thẳng hợp với 2 trục tọa độ 1 tam giác cân nên có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\) Nhận (1;1) hoặc (1;-1) là vtpt
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-4\right)+1\left(y-5\right)=0\\1\left(x-4\right)-1\left(y-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y-9=0\\x-y+1=0\end{matrix}\right.\)
a/ \(\left(d\right):3\left(x-1\right)+4\left(y+2\right)=0\)
\(\left(d\right):3x+4y+5=0\)
b/ \(\left(d\right)//\left(d'\right)\Rightarrow\overrightarrow{n}=\left(4;1\right)\)
\(\Rightarrow\left(d\right):4\left(x+3\right)+y-2=0\)
\(\left(d\right):4x+y+10=0\)
c/ \(\left(d\right)\perp Ox\Rightarrow\overrightarrow{n}=\left(1;0\right)\)
\(\Rightarrow x=0\)
Mà cái này là trục Oy luôn rồi còn đâu :<
Đường thẳng d có phương trình dạng chính tắc: \(\frac{x+2}{-1}=\frac{y-3}{4}\)
\(\Rightarrow\) d đi qua điểm \(M\left(-2;3\right)\)
d nhận \(\left(-1;4\right)\) là 1 vtcp
\(\Rightarrow\) d nhận \(\left(4;1\right)\) là 1 vtpt
b/ Phương trình tham số d: \(\left\{{}\begin{matrix}x=-2-t\\y=3+4t\end{matrix}\right.\)
Hệ số góc: \(k=\frac{4}{-1}=-4\)
Câu 2:
Phương trình đoạn chắn của \(\Delta\): \(\frac{x}{2}+\frac{y}{-6}=1\)
1. Phương trình d có dạng:
\(y=2\left(x-1\right)+1\Leftrightarrow y=2x-1\)
2. Do d tạo chiều dương trục Ox một góc 30 độ nên d có hệ số góc \(k=tan30^0=\dfrac{\sqrt{3}}{3}\)
Phương trình d:
\(y=\dfrac{\sqrt{3}}{3}\left(x-1\right)+2\Leftrightarrow y=\dfrac{\sqrt{3}}{3}x+\dfrac{6-\sqrt{3}}{3}\)
3. Do d tạo với trục Ox một góc 45 độ nên có hệ số góc thỏa mãn:
\(\left|k\right|=tan45^0\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=1\left(x-3\right)+4\\y=-1\left(x-3\right)+4\end{matrix}\right.\)