K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Tham khảo  : 

mk tham khảo nên ko chắc đúng 

\(Đáp án: ( x − 1 2 ) 2 + ( y − 3 2 ) 2 = 25 2 Giải thích các bước giải: Tọa độ giao điểm của (d) và (C) là nghiệm của hệ phương trình { x − 7 y + 10 = 0 x 2 + y 2 − 2 x + 4 y − 20 = 0 ⇔ { x = 7 y − 10 ( 1 ) x 2 + y 2 − 2 x + 4 y − 20 = 0 ( 2 ) Thay (1) vào (2) ta được ( 7 y − 10 ) 2 + y 2 − 2 ( 7 y − 10 ) + 4 y − 20 = 0 ⇔ 49 y 2 − 140 y + 100 + y 2 − 14 y + 20 + 4 y − 20 = 0 ⇔ 50 y 2 − 150 y + 100 = 0 ⇔ y 2 − 3 y + 2 = 0 ⇔ ( y − 2 ) ( y − 1 ) = 0 ⇔ [ y = 2 y = 1 + ) y = 2 ⇒ x = 4 ⇒ B ( 4 ; 2 ) + ) y = 1 ⇒ x = − 3 ⇒ C ( − 3 ; 1 ) Phương trình đường tròn có dạng ( C 1 ) x 2 + y 2 − 2 a x − 2 b y + c = 0 Ta có đường tròn đi qua 3 điểm A ( 1 ; − 2 ) , B ( 4 ; 2 ) , C ( − 3 ; 1 ) A ( 1 ; − 2 ) ∈ ( C 1 ) : 1 2 + ( − 2 ) 2 − 2 a + 4 b + c = 0 ⇔ − 2 a + 4 b + c = − 5 B ( 4 ; 2 ) ∈ ( C 1 ) : 4 2 + 2 2 − 8 a − 4 b + c = 0 ⇔ − 8 a − 4 b + c = − 20 C ( − 3 ; 1 ) ∈ ( C 1 ) : ( − 3 ) 2 + 1 2 + 6 a − 2 b + c = 0 ⇔ 6 a − 2 b + c = − 10 Ta có hệ phương trình ⎧ ⎨ ⎩ − 2 a + 4 b + c = − 5 − 8 a − 4 b + c = − 20 6 a − 2 b + c = − 10 ⇔ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a = 1 2 b = 3 2 c = − 10 ⇒ I ( 1 2 ; 3 2 ) , R = √ 1 2 2 + 3 2 2 − ( − 10 ) = 5 √ 2 2 Phương trình đường tròn có dạng ( x − 1 2 ) 2 + ( y − 3 2 ) 2 = 25 2 \)

5 tháng 2 2022

Xucana nó lỗi luôn😂

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.

23 tháng 4 2023

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

23 tháng 4 2023
23 tháng 4 2023

Tên quen ta :))

31 tháng 7 2017

Đáp án: C

Ta có:

(C): x 2  + y 2  + 2x + 4y = 0 ⇔ (x + 1 ) 2  + (y + 2 ) 2  = 5

⇒ I(-1;-2), R = 5

Vì d’ song song với d nên d': 2x + y + c = 0, (c ≠ -3)

Đường thẳng d’ tiếp xúc với (C) nên

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Vậy phương trình đường thẳng d’ là: 2x + y - 1 = 0 hoặc 2x + y + 9 = 0

22 tháng 5 2017

ĐÁP ÁN D

Tọa độ giao điểm của đường thẳng ∆ và đường tròn (C) nếu có là nghiệm hệ phương trình: là nghiệm của hệ phương trình

x − y + ​    4 = 0     ( 1 ) x 2 + ​ y 2 + ​ 2 x − 4 y − 8 = 0     ( 2 )

Từ  (1) suy ra: y = x + 4  thay vào (2) ta được: 

x 2   +     ( x +   4 ) 2   +     2 x   –   4 .   ( x +   4 )   -   8   =   0     x 2   +   x 2   +     8 x   +   16   +   2 x   -     4 x   –   16   -   8 =   0

 2x2 + 6x  - 8 =  0   ⇔ x = 1 ⇒ y =    5 x = − 4 ⇒ y = 0

Vậy đường thẳng cắt đường tròn tại 2 điểm phân biệt là (1; 5) và  ( -4; 0)

30 tháng 11 2019

Đáp án D

Gọi d  là đường thẳng qua M có véc tơ chỉ phương:

- Đường tròn (C1) tâm I1 (1;1) và R1= 1

  Đường tròn (C2) : tâm I2( -2;0) và R2= 3

- Nếu d cắt  (C1) tại A :

- Nếu d cắt (C2)  tại B:

- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)

- Ta có :