K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

- Gọi phương trình đường thẳng (d) có dạng : \(y=ax+b\)

Mà đường thẳng (d) đi qua điểm A nên :

- Thay x = 3, y = -1 và phương trình (d) ta được :

\(-1=3a+b\) ( I )

- Ta có : (\(\Delta\) ) : 2x + 3y - 1 = 0

=> \(y=-\frac{2x}{3}+\frac{1}{3}\)

- Mà đường thẳng (d) // ( \(\Delta\) ) nên : \(\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne\frac{1}{3}\end{matrix}\right.\)

- Thay a = \(-\frac{2}{3}\) vào phương trình ( I ) ta được :

\(-1=3.\left(-\frac{2}{3}\right)+b\)

=> \(b=1\) ( tm )

- Thay \(a=-\frac{2}{3},b=1\) vào phương trình (d) ta được :\(y=-\frac{2x}{3}+1\)

Vậy phương trình đường thẳng (d) : \(y=-\frac{2x}{3}+1\)

5 tháng 3 2022

\(\Delta:2x+3y-1=0.\)

\(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n_{\left(\Delta\right)}}=\left(2;3\right).\)

Phương trình đường thẳng \(\left(d\right)\) song song với đường thẳng \(\Delta:2x+3y-1=0.\) 

\(\Rightarrow\) VTPT của đường thẳng \(\Delta\) cũng là VTPT của đường thẳng \(\left(d\right).\)

\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right).\)

Ta có đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right)\) làm VTPT; đi qua điểm \(A\left(3;-1\right).\)

\(\Rightarrow\) Phương trình đường thẳng \(\left(d\right)\) là:

\(2\left(x-3\right)+3\left(y+1\right)=0.\\ \Leftrightarrow2x-6+3y+3=0.\\ \Leftrightarrow2x+3y-3=0.\)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

25 tháng 7 2021

\(\Delta\) đi qua M(1,-1) có hệ số góc k

=> \(\Delta:y=k\left(x-1\right)-1=kx-k-1\)

\(\Delta\) song song d: \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) \(=>k=\dfrac{1}{2}\)

\(\Delta:y=\dfrac{1}{2}x-\dfrac{3}{2}\)

1 tháng 5 2023

Ta có: \(\Delta//d\Rightarrow\Delta:2x-3y+c=0\left(c\ne-1\right)\)

\(A\left(1;2\right)\in\Delta:2\cdot1-3\cdot2+c=0\)

\(\Leftrightarrow c=4\)

Vậy: \(\Delta:2x-3y+4=0\)

Vì (Δ)//d nên Δ: 2x-3y+c=0

Thay x=1 và y=2 vào Δ, ta được:

c+2-6=0

=>c=4

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;3} \right)\)

\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát

          \(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)

b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u  = \left( {3; - 1} \right)\)

\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y =  - 1 - t\end{array} \right.\)