Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng cần tìm có hệ số góc là \(-\frac{1}{2}\)nên có dạng \(y=-\frac{1}{2}x+a\)
Phương trình hoành độ giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là: \(x+3=2x-1\)\(\Leftrightarrow x=4\)
\(\Rightarrow y=x+3=4+3=7\)
Vậy giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là điểm \(\left(4;7\right)\)
Mà \(\left(d\right):y=-\frac{1}{2}x+a\)đi qua điểm \(\left(4;7\right)\)nên ta thay \(x=4;y=7\)vào hàm số, ta có:
\(7=-\frac{1}{2}.4+a\)\(\Leftrightarrow a=9\)
Vậy phương trình đường thẳng cần tìm là \(\left(d\right):y=-\frac{1}{2}x+9\)
Vì (d) có hệ số góc bằng -1/2 nên a=-1/2
Vậy: (d): y=-1/2x+b
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Thay x=4 và y=7 vào (d), ta được: b-2=7
hay b=9
2: Vì (d)//(d') nên a=5
Vậy: (d): y=5x+b
Thay x=-2 và y=4 vào (d), ta được:
b-10=4
hay b=14
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
Gọi (d): y = ax + b là đường thẳng cần viết
a) Do (d) song song với đường thẳng y = 3x/2 nên a = 3/2
⇒ (d): y = 3x/2 + b
Do (d) đi qua A(1/2; 7/4) nên:
3/2 . 1/2 + b = 7/4
⇔ 3/4 + b = 7/4
⇔ b = 7/4 - 1/4
⇔ b = 1
Vậy (d): y = 3x/2 + 1
b) Do (d) cắt trục tung tại điểm có tung độ là 3 nên b = 3
⇒ (d): y = ax + 3
Do (d) đi qua điểm B(2; 1) nên:
a.2 + 3 = 1
⇔ 2a = 1 - 3
⇔ 2a = -2
⇔ a = -2 : 2
⇔ a = -1
Vậy (d): y = -x + 3
c) Do (d) có hệ số góc là 3 nên a = 3
⇒ (d): y = 3x + b
Do (d) đi qua P(1/2; 5/2) nên:
3.1/2 + b = 5/2
⇔ 3/2 + b = 5/2
⇔ b = 5/2 - 3/2
⇔ b = 1
Vậy (d): y = 3x + 1
d: Gọi (d): y=ax+b(\(a\ne0\))
(d) có tung độ gốc là -2,5 nên (d) cắt trục tung tại điểm có tung độ là -2,5
Thay x=0 và y=-2,5 vào (d), ta được:
\(a\cdot0+b=-2,5\)
=>b=-2,5
=>y=ax-2,5
Thay x=1,5 và y=3,5 vào y=ax-2,5; ta được:
\(a\cdot1,5-2,5=3,5\)
=>\(a\cdot1,5=6\)
=>a=4
Vậy: (d): y=4x-2,5
e: Thay x=1 và y=2 vào (d), ta được:
\(a\cdot1+b=2\)
=>a+b=2(1)
Thay x=3 và y=6 vào (d), ta được:
\(a\cdot3+b=6\)
=>3a+b=6(2)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\3a+b=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a+3b=6\\3a+b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=0\\a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=0\\a=2-b=2-0=2\end{matrix}\right.\)
Vậy: (d): y=2x
Gọi phương trình đường thẳng d: y = a x + b
Vì d có hệ số góc bằng 2 nên a = 2 ⇔ y = 2 x + b
Thay tọa độ điểm A vào phương trình đường thẳng d ta có 2 . 2 + b = 1 ⇔ b = − 3
Nên d: y = 2 x − 3
Đáp án cần chọn là: B