Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì khi phân tích mẫu ra thừa số nguyên tố, trong đó có thừa số khác 2 và 5 nên cả bốn phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
a) Các phân số được viết dưới dạng tối giản là:
\(\dfrac{5}{8};\dfrac{-3}{20};\dfrac{4}{11};\dfrac{15}{22};\dfrac{-7}{12};\dfrac{2}{5}\)
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=-0,15\) \(\dfrac{14}{35}=\dfrac{2}{5}=0,4\)
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
\(\dfrac{4}{11}=0,\left(36\right)\) \(\dfrac{-3}{20}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\)
b) Các phân số được viết dạng số thập phân hữu hạn
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=0,15\) \(\dfrac{14}{35}=0,4\)
Các số thập phân vô hạn tuần hoàn là:
\(\dfrac{15}{22}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\) \(\dfrac{4}{11}=0,\left(36\right)\)
a) Các phân số được viết dưới dạng tối giản là:
58;−320;411;1522;−712;2558;−320;411;1522;−712;25.
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
58=0,625;58=0,625; −320=−0,15−320=−0,15; 1435=25=0,41435=25=0,4
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
411=0,(36)411=0,(36) 1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3)
b) Các phân số được viết dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn là:
58=0,62558=0,625 −320=−0,15−320=−0,15 411=0,(36)411=0,(36)
1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3) 1435=0,4
a) - Viết dạng thập phân vô hạn tuần hoàn:\(\dfrac{1}{9};\dfrac{1}{99}\) là: \(\dfrac{1}{9}=0,(1);\dfrac{1}{99}=0,(01)\)
- Nhận xét:
Dạng thập phân vô hạn tuần hoàn của phân số có dạng \(\dfrac{1}{99...9}\) như sau:
\(\dfrac{1}{99...9}= 0,(0…001) \) ( n chữ số 9); ( \(n-1\) chữ số 0)
b) Dự đoán kết quả của \(\dfrac{1}{999}\)
Theo nhận xét ở câu a ta có: \(\dfrac{1}{999}=0,(001)\)
Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 6=2.3, 11=1.11, 9=3.3, 18 = 2. đều có chứa thừa số nguyên tố khác 2 và 5 nên chúng được viết dưới dạng số thập phân vô hạn tuần hoàn
Ta được:
Các phân số đã cho có mẫu dương. Các mẫu đó lần lượt là 6 = 2.3,
11 = 1.11, 9 = 3.3, 18 = 2.32 đều có chứa thừa số nguyên tố khác 2
và 5 \(\Rightarrow\) Chúng được viết dưới dạng số thập phân vô hạn tuần hoàn.
Ta được: \(\dfrac{1}{6}=0,1\left(6\right);-\dfrac{5}{11}=-0,\left(45\right);\dfrac{9}{4}=0,\left(4\right);\dfrac{-7}{18}=-0,3\left(8\right)\)
Vì mẫu của các phân số này có ước nguyên tố khác 2 và 5.
\(\dfrac{5}{6}=0,8\left(3\right)\)
\(\dfrac{-5}{3}=-1,\left(6\right)\)
\(\dfrac{7}{15}=0,4\left(6\right)\)
\(\dfrac{-3}{11}=-0,\left(27\right)\)
a: 12 khi phân tích thành nhân tử, có thừa số 3 là thừa số khác 2 và 5 ở trong nên 7/12 viết được dưới dạng số thập phân vô hạn tuần hoàn
Phân số hữu hạn là : \(\frac{5}{8}=0.625,-\frac{3}{20}=-0.15\)\(\frac{14}{35}=\frac{2}{5}=0.4\) vì mẫu tối giản của chúng là tích của các lũy thừa 2 và 5.
Phân số còn lại là vô hạn tuần hoàn vì mẫu của chúng không phân tích được thành tích của các lúy thừa 2 và 5.
Số \(\frac{4}{11}=0.\left(36\right),\frac{15}{22}=0.68\left(18\right),-\frac{7}{12}=-0.58\left(3\right)\)
Ta có: \(\dfrac{5}{9}=0,5555….=0,(5);\)
\(\dfrac{5}{99}= 0,050505…=0,(05)\)