K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

\(\left(3x-2y\right)^2+4\left(3x-2y\right)+4\\ =\left(3x-2y\right)^2+2.2\left(3x-2y\right)+2^2\\ =\left(3x-2y+2\right)^2\)

Áp dụng HĐT số 1 : \(A^2+2AB+B^2=\left(A+B\right)^2\)

23 tháng 8 2017

1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) 16x2 +  * .24xy + x

b) * - 42xy + 49y2

c) 25x+ * + 81

d) 64x2 - * +9

2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương

a) x2 + 10x + 26 + y+ 2y

b) z2 - 6z + 5 - t2 - 4t

c) x2 - 2xy + 2y2 + 2y + 1

d) ( x + y + 4 )( x + y - 4 )

e) ( x + y - 6 )

23 tháng 8 2017

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;

\(\left(5x+2y\right)\left(3x-8y\right)=\left[\left(4x-3y\right)+\left(x+5y\right)\right]\left[\left(4x-3y\right)-\left(x+5y\right)\right]\)

\(=\left(4x-3y\right)^2-\left(x+5y\right)^2\)

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

10 tháng 9 2017

3.

a, (2y- 1)3= (2y)3-3.(2y)2.1+3.2y.12-13

= 8y3-12y2+6y-1

b, (3x2+2y)3=(3x2)3+3.(3x2)2.2y+3.3x2.(2y)2+13

=27x6+54x4y+36x2y2+1

c, ( 1/3x-2)3=(1/3x)3-3.(1/3x)2.2+3.1/3x.22-23

=1/27x3-2/3x2+4x-8

4.

a, -x3+3x3-3x+1=1-3x+3x3-x3

=1-3.12.x+3.1.x3-x3

=(1-x)3

b,64-48x+12x2-x3=43-3.42.x+3.4.x2-x3

=(4-x)3

10 tháng 9 2017

Bài 3 Tính:

\(a\)) \(\left(2y-1\right)^3=2y^3-3.\left(2y\right)^2.1+3.2y.1^2-1^3\)

\(=2y^3-12y^2+6y-1\)

b)\(\left(3x^2+2y\right)^3\)

\(=\left(3x^2\right)^3=3.\left(3x^2\right)^2.2y+3.\left(3x^2\right).\left(2y\right)^2+\left(2y\right)^3\)

\(=27x^8+3.9x^4.2+9x^2.4y+8y^3\)

\(=27x^8+54x^4+36x^2y+8y^3\)

c)\(\left(\dfrac{1}{3}x-2\right)^3\)

\(=\left(\dfrac{1}{3}x\right)^3-3.\left(\dfrac{1}{3}x\right)^2.2+3.\dfrac{1}{3}x.2^2-2^3\)

\(=\dfrac{1}{27}x^3-3.\dfrac{1}{9}x^2.2+x.2^2-8\)

\(=\dfrac{1}{27}x^3-\dfrac{2}{3}x^2+4x-8\)

3 tháng 7 2018

a) \(A=8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

b) \(B=x^3+3x^2+3x+1=\left(x+1\right)^3\)

c) \(C=x^3-3x^2+3x-1=\left(x-1\right)^3\)

d)  \(D=27+27y^2+9y^4+y^6=\left(3+y^2\right)^3\)

6 tháng 9 2017

a ) Ta có : -x3 + 3x2 - 3x + 1

= 1 - 3x + 3x2 - x3

= (1 - x)

b) Ta có : 8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.2.x2 - x3

= (2 - x)3

26 tháng 6 2018

a, -x3 + 3x- 3x + 1

   = -x+ 3.x2.1 - 3.x.12 + 1

   = ( -x + 1 )3