Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)
2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.
- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.
3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.
4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau
5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)
Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)
Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)
Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)
6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.
VD : \(\frac{8}{2}\) = 4
7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)
t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=\frac{b}{a}=\frac{d}{c}\)
\(ad=bc=\frac{b}{d}=\frac{a}{c}\)
\(ad=bc=\frac{d}{b}=\frac{c}{a}\)
T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)
8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn
vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................
9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.
Trục số thực là trục số biểu diễn các số thực
10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a
1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)
2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.
số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương
3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm
4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x
5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)
chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)
luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)
luỹ thừa của 1 tích: \(5.5=5^2\)
luỹ thừa của 1 thương:\(25:5=5^1\)
Ta có:
\(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Vì \(2009< 2010\) \(\Rightarrow3^{2009}< 9^{1005}\)
Công thức : \(\left(a^m\right)^n=a^{m\cdot n}\) \(\left(m,n\ne0\right)\)
So sánh: \(3^{2009}\)và \(9^{1005}\)
Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2\cdot1005}=3^{2010}\)
Vì \(2009< 2010\) nên \(3^{2009}< 3^{2010}\) hay \(3^{2009}< 9^{1005}\)