K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) A là tập hợp các số nguyên có giá trị tuyệt đối nhỏ hơn 5.

\(A = \{  - 4; - 3; - 2; - 1;0;1;2;3;4\} \)

b) B là tập hợp các nghiệm thực của phương trình \(2{x^2} - x - 1 = 0.\)

\(B = \{ 1; - \frac{1}{2}\} \)

c) C là tập hợp các số tự nhiên có hai chữ số.

\(C = \{ 10;11;12;13;...;99\} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{  - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)

b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)

c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)

d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)

15 tháng 9 2021

\(c,20=2^2\cdot5\\ 45=3^2\cdot5\\ ƯCLN\left(20,45\right)=5\\ \RightarrowƯC\left(20,45\right)=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\\ C=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(d,\left(6x^2-7x+1\right)\left(x^3-x\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6x-1\right)x\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{6}\\x=1\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow D=\left\{-1;0;\dfrac{1}{6};1\right\}\)

15 tháng 9 2021

Sửa: \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{6}\\x=1\\x=-1\end{matrix}\right.\Leftrightarrow D=\left\{-1;0;\dfrac{1}{6};1\right\}\)

a: A={0;1;2;3}

b: B={-16;-13;-10;-7;-4;-1;2;5;8}

c: C={-9;-8;-7;...;7;8;9}

d: \(D=\varnothing\)

19 tháng 7 2023

Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)

Điều kiện: \(x\ge\dfrac{1}{2}\)

\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)

\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)

Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)

Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)

\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)

\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)

Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)

Đề thiếu rồi bạn