K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Bài 62: 25x2y6-60xy4z2+36y2z4=(5xy3)2-2.5xy3.(6yz2)2

Bài 63: 1/9u4v6-1/3u5v4+(1/2u3v)=(1/3u2v3)-2.1/3u2v3.1/2u2v3+(1/2u3v)

a) \(\left(5xy^3\right)^2-2.5xy^3.6yz^2+\left(6yz^2\right)^2\)=\(\left(5xy^3-6yz^2\right)^2\)

b) \(\left(\frac{1}{3}u^2v^3\right)^2-2.\frac{1}{3}u^2v^3.\frac{1}{2}u^3v+\left(\frac{1}{2}u^3v\right)^2\)=\(\left(\frac{1}{3}u^2v^3-\frac{1}{2}u^3v\right)^2\)

1 tháng 8 2018

Tích mình đi

Ai tích sẽ có lợi

vì khi có lợi bạn sẽ được người khác tích lại.

THANKS

1 tháng 8 2018

\(\frac{9}{16}x^{2m-2}y^2-2x^my^m+\frac{16}{9}x^2y^{2m-2}\)

\(=\left(\frac{3}{4}x^{m-1}y-\frac{4}{3}xy^{m-1}\right)^2\)

p/s: chúc bạn học tốt

21 tháng 8 2023

a) \(x^2+4x+4\)

\(=x^2+2\cdot2\cdot x+2^2\)

\(=\left(x+2\right)^2\)

b) \(4x^2-4x+1\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)

\(=\left(2x-1\right)^2\)

c) \(x^2-x+\dfrac{1}{4}\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2\)

d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)

\(=\left[2\left(x+y\right)-1\right]^2\)

\(=\left(2x+2y-1\right)^2\)

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá...
Đọc tiếp

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+

1

Bài 8:

Ta có: \(A=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=1

23 tháng 6 2023

này mình có vài câu không làm được, xin lỗi bạn nha

\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)

 

 

 

 

 

 

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

19 tháng 9 2021

Bài 1: 

a) \(a^2-6a+9=\left(a-3\right)^2\)

b) \(\dfrac{1}{4}x^2+2xy^2+4y^4=\left(\dfrac{1}{2}x+2y^2\right)^2\)

Bài 2:

a)  \(\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\)

\(\Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\)

b) \(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2