K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y\right)^2-2.\left(x-2y\right).2+2^2=\left(x-2y-2\right)^2\)

29 tháng 7 2016

a) 6xy^3+x^2y^6+9

= (xy^3 + 3)^2

b) x^4-2x^2y+y^2

= (x^2 - y)^2

c) x^6+25-10x^3

= (x^3 - 5)^2

30 tháng 7 2016

a/ 6xy3+x2y6+9

= (xy3+3)2 bình phương của 1 tổng;cttq: (A+B)2

b/ x4-2x2y+y2

= (x2-y)2 bình phương của 1 hiệu; cttq (A-B)2

c/ x6+25-10x3

=(x3-5)2

17 tháng 7 2021

`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`

`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`

`=(x/2+y-2z)^3`

Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)

\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)

\(=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.y^2+3.\frac{x}{2}.\left(y^2\right)^2+\left(y^2\right)^3\)

\(=\left(\frac{x}{2}+y^2\right)^3\)

29 tháng 6 2023

1, \(x^2+2xy+y^2=\left(x+y\right)^2\)

2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)

3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)

4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)

5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

1: =(x+y)^2

2: =(2x+3)^2

3: =(x+5/2)^2

4: =(4x-1)^2

5: =(x+1/2)^2

6: =(x-3/2)^2

7: =(x+1)^3

8: =(1/2x+1)^2

9: =(3y-1/3)^3

10: =(2x+y)^3

a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)

\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)

\(=\left(x^2+9x+19\right)^2\)

b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)

\(=\left(x^2+2x+2+y^2+2y\right)^2\)

5 tháng 10 2023

4x²y⁴ - 4xy³ + y²

= (2xy²)² - 2.2xy².y + y²

= (2xy² - y)²

------------

Sửa đề:

(x - 2y)² - 4(x - 2y) + 4

= (x - 2y)² - 2.(x - 2y).2 + 2²

= (x - 2y - 2)²

------------

25x² - 5xy + 1/4 y²

= (5x)² - 2.5xy.y/2 + (y/2)²

= (5x - y/2)²

5 tháng 10 2023

\(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

_____
\(\left(x-2y\right)^2-4\left(x-2y\right)+4\)

\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)

\(=\left[\left(x-2y\right)-2\right]^2\)

\(=\left(x-2y-2\right)^2\)

____

\(25x^2-5xy+\dfrac{1}{4}y^2\)

\(=\left(5x\right)^2-2\cdot\dfrac{5}{2}xy+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(5x\right)^2-2\cdot\dfrac{1}{2}y\cdot5x+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(5x-\dfrac{1}{2}y\right)^2\)