K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

toàn hđt mà bạn 

a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)

b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)

c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)

d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)

\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)

12 tháng 8 2021

sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn 

\(\left(2u-4v\right)^3\)

NM
12 tháng 8 2021

Thực hiện nhân tung ra ta có .

a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)

b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)

\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)

c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)

\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)

12 tháng 8 2021

a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)

\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)

\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)

\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)

\(=6x+26\)

10 tháng 6 2015

B1)9x4+16y6-24x2y3=(3x2-4y3)2

B2)a)81-x4=(9-x2)(9+x2)=(3-x)(3+x)(9+x2)

b)(2x+y)2-1=(2x+y-1)(2x+y+1)

c)(+y+z)2-(x-y-z)2=(x+y+z-x+y+z)(x+y+z+x-y-z)=(2y+2z)2x=4x(y+z)

B3)

(123+1)(123-1)-36.46

=126-1-(3.4)6

=126-1-126=-1

21 tháng 7 2017

a) \(9x^2-6x+1\)

\(=\left(3x\right)^2-2\cdot3\cdot x+1^2\)

\(=\left(3x-1\right)^2\)

b) \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1\)

\(=\left(2x+3y+1\right)^2\)

29 tháng 9 2022

a) x2+2x+1= (x+1)2

b) 9x2+6xy+y2= (3x+y)2

 

29 tháng 6 2017

9x2 - 6x + 1 = (3x + 1 )2

-x2 + 6x - 9 = ( -x - 3 )2

25x + 30x + 9 = ( 5x + 3 )2

-1/4 + 2x - x2 = ( - 1/2 - x )2

4x2 - 12x + 9 = ( 2x +3 )2

29 tháng 6 2017

a, 9x2-6x+1

=(3x)2-2.3x.1+12

=(3x-1)2

b, -x2+6x-9

=-(x2-6x+9)

=-(x2-2x.3+32)

=-(x-3)2

c, 25x2+30x+9

=(5x)2+2.5x.3+32

=(5x+3)2

d, Mik nghĩ là đề sai chỗ +2x phải là +x (ko tin bn có thể thế đại 1 số rùi thử lại nhoa!!!)

e, 4x2-12x+9

=(2x)2-2.2x.3+32

=(2x-3)2

Chúc bn học giỏi nhoa!!!

1 tháng 7 2016

Ta có x^2 + 4x + 4 = x^2+2.x.2+2^2=(x+2)^2

16 tháng 8 2018

Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD. 
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có: 
AB < OA + OB (1) 
BC < OB + OC (2) 
CD < OC + OD (3) 
DA < OD + OA (4) 
(1) + (2) + (3) + (4) : 
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD) 
hay (1/2)(AB + BC + CD + DA) < AC + BD (*) 
Mặt khác : 
AC < AB + BC (1') 
BD < BC + CD (2') 
AC < CD + DA (3') 
BD < DA + AB (4') 
(1') + (2') + (3') + (4') : 
2(AC + BD) > 2(AB + BC + CD + DA) 
hay AC + BD < AB + BC + CD + DA (**) 
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA

16 tháng 8 2018

Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.

Gọi O là giao điểm của AC và BD ta có:

AC+BD=AO+OB+OC+OD>AB+CD=a+c

Tương tự: AC+BD>b+d.

Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2

Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.

Theo bất đẳng thức tam giác ta có:

AC<a+b;AC<c+d

BD<b+c;BD<a+d

⇒2(AC+BD)<2(a+b+c+d).

⇒AC+BD<a+b+c+d.

Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.

a:

ta có: \(\dfrac{OA}{OD}=\dfrac{OB}{OC}\)

=>\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)

Xét ΔOAD và ΔOBC có

\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)

\(\widehat{O}\) chung

Do đó: ΔOAD~ΔOBC

b: Ta có: \(OA\cdot OC=OB\cdot OD\)
=>\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)

Xét ΔOAD và ΔOBC có

\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)

\(\widehat{O}\) chung

Do đó: ΔOAD~ΔOBC