Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính giá trị của biểu thức: A=\(\frac{5x^2+3y^2}{10x^2-3y^2}\left(1\right)biết\frac{x}{3}=\frac{y}{5}suyra:5x=3y;suyra:x=\frac{3y}{5};thayvào\left(1\right)taco:\frac{5\left(\frac{3y}{5}\right)^2+3y^2}{10\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2}{5}+3y^2}{\frac{18y^2}{5}-3y^2}=\frac{24y^2}{5}\cdot\frac{5}{3y^2}=8\)
2.\(\frac{x}{y}=\frac{7}{10}suyra;\frac{x}{7}=\frac{y}{10}\left(1\right)và\frac{y}{z}=\frac{5}{8}suyra;\frac{y}{5}=\frac{z}{8}suyra;\frac{y}{5}\cdot\frac{1}{2}=\frac{z}{8}\cdot\frac{1}{2}suyra;\frac{y}{10}=\frac{z}{16}\left(2\right)Tù\left(1\right)và\left(2\right)suyra\frac{x}{7}=\frac{y}{10}=\frac{z}{16}và2x+5y-2z=9;suyra:\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}ápdụngtínhchấtcủadãytỉsốbằngnhautacó\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{9}{32}suyra;x=\frac{63}{32};y=\frac{45}{16};z=\frac{9}{2}\)
a) Theo bài ra, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow\left(2x+1\right).9=\left(4y-5\right).5\)
\(\Rightarrow18x+9=20y-25\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=14:7\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(18x+9=20y-25\)
\(hay:18.2+9=20y-25\)
\(\Rightarrow20y-25=36+9\)
\(\Rightarrow20y-25=45\)
\(\Rightarrow20y=45+25\)
\(\Rightarrow20y=70\)
\(\Rightarrow y=\frac{7}{2}\)
Vậy \(x=2;y=\frac{7}{2}\)
b) Theo bài ra, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)
\(\Rightarrow\left(x+4\right).8=\left(3y-1\right).6\)
\(\Rightarrow8x+32=18y-6\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}=\frac{3y-1-x+4}{8-6}=\frac{3y-x-5}{2}\)
\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(8x+32=18y-6\)
\(hay:8.2+32=18y-6\)
\(\Rightarrow18y-6=16+32\)
\(\Rightarrow18y-6=48\)
\(\Rightarrow18y=48+6\)
\(\Rightarrow18y=54\)
\(\Rightarrow y=3\)
Vậy \(x=2;y=3\)
Giải:
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\) \(=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
Do \(\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\left(2x+4y-4\right)14=\left(2x+4y-4\right)7x\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)
Khi đó \(\frac{2.2+1}{5}=\frac{4y-5}{9}\)
\(\Rightarrow\frac{4y-5}{9}=1\)
\(\Rightarrow4y-5=9\)
\(\Rightarrow4y=14\Rightarrow y=3,5\)
Vậy \(\left[\begin{matrix}x=2\\y=3,5\end{matrix}\right.\).
\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
\(=\frac{13}{3}-4+5\cdot\frac{2}{3}-\frac{25}{6}\)
\(=\frac{1}{3}+\frac{10}{3}-\frac{25}{6}\)
\(=\frac{11}{3}-\frac{25}{6}\)
\(=-\frac{1}{2}\)
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn